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Introduction

e There is much interest in

JI suppression in hot
nuclear matter!

* For the latest PHENIX charm-
onia measurements, see:

o Session XVIII: Susumu Oda

and Catherine Silvestre

o poster by Cesar Luiz da Silva
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» Unfortunately, this is not sufficient to understand hot
nuclear matter effects. We must also understand the cold
nuclear matter effects on the J/¥. That is our baseline.




Cold Nuclear Matter Effects on
|y Production

* Cold nuclear matter is a complicated place!
> Shadowing, gluon saturation, anti-shadowing, EMC effect...
o Initial and final state partonic multiple scattering...

o Cronin effect...

* One way that we can study CNM is through high-
energy ptA or d+A collisions.

« At RHIC we use s\ =200 GeV d+Au, which was first
collided in Run-3 and now again in Run-8.



What Can We Do Now!?

New p+p data set in 2005 with an order of magnitude
better statistics.

Two years of improvements in:
Reconstruction software
Signal extraction
Understanding of detector

Need d+Au analysis done using same method as the new
p+p data, so we can do an apples-to-apples comparison.

Run-4 and Run-7 R,, also use this p+p reference.

For details of the analysis, see arXiv:0711.3917 (accepted
for publication in Phys. Rev. C).



The PHENIX Experiment

MuTr and MulD
detect )/ Y —uu
at forward &
backward
rapidities.

Drift Chamber, Pad Chamber,
EMCal & RICH detect |/ ¢ —ee
at mid-rapidity.

!/,

Beam-Beam
Counter used to
measure centrality
and collision z-
position.

deuteron
y>0



Parton Momentum Cartography

* Nuclear PDFs are _ —
o~ ermi
modified in various x- > anti-shadowing Effect
ranges. ;;: A W
> Shadowing, anti-shadowing, Saturation?
EMC effect, etc. 8 ek EMC
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JJ ¥ pr Spectra

d+Au data are from Run-3,
p+p are from Run-5.

Fits are to a power law over p;
& [0,5] GeV/c, then integrated
to get <p *>.

Can compare to other systems
to study pr-spectrum
broadening from Cronin Effect/
multiple scattering.

» For discussion of this see the
talk by Susumu Oda in XVIILI.

Jiy Invariant Yield
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J/ ¥ Invariant Yields
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|/ ¥ Nuclear Modification Factor

1 de—l—Au/y
<Ncoll> de-I—p/y

RdAu —
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Comparison to Nuclear Models

One can use EKS' and NDSG? nuclear modified PDFs to calculate
Rya, @s a function of rapidity.

Assume that all additional J/ ¢ suppression can be accounted for by a
single parameter due to interactions with the Au ion. Express this in
terms of a breakup cross section, Oy, ep-

Then we can fit our measured R, to extract Opeyp-

R4a, from nuclear-modified PDFs

O-breakup

'K. J. Eskola,V.]. Kolhinen, and R.Vogt, Nucl. Phys. A696,729 (2001)
2D. de Florian and R. Sassot, Phys. Rev. D69, 074028 (2004)



Comparison to Nuclear Models

arXiv:0711.3917 arXiv:0711.3917
T T T T T T | T T T | T T T | T T T | T T T T T T T T T | T T T | T T T | T T T | T T T
[ .- *11% Global Scale Uncertainty ] B * 11% Global Scale Uncertainty
o R -
® 4 1 e -
! 1 1 RN
i e e e TSN P I ]
- | T -._-. ::::::::::: s N--.--.--'-'-'-'-'-'-'-'-'- ------l-- ----------------------
< r TS C I < - T
o o T—— S T L EEEE——
T 0.5 = Eos5- ]
| EKS Model | . NDSG Model |
e Opreakup = 051,2,3,5 mb (top to bottom) 1 e Opreakup = 051,2,3,5 mb (top to bottom) 1
: —— Best Fit 6, g0 = 28 17/ Mb : : —— Best Fit 6,0 = 2275 Mb :
0 I | | I | | I | | I | | I | | I | 0 I | | I | | I | | I | | I | | I |
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Rapidity Rapidity

Using EKS (NDSG) model we get Opeqiup = 2-8"'7 4(2.2%" | 5) mb.

Both are compatible (within very large error bars) with Oy, e, = 4.2£0.5 mb

measured at the CERN SPS.
B.Alessandro et al., Euro. Phys. J. C48, 329 (2006), nucl-ex/0612012



Extrapolation to Au+Au

We can use the calculated O, due to CNM effects to extrapolate to CNM
effects in Au+Au collisions.

Assuming these nuclear modified PDFs are exactly correct, there is statistically
significant )/ suppression beyond CNM effects at forward rapidity in Au+Au

collisions.

It must be noted that the error bands are correlated between forward and mid-

rapidity.
A Mid-rapidity
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Centrality in d+Au

e At RHIC we are also able
to make measurements vs.
impact parameter.

e In Run-3 we use 4
centrality bins, each L
corresponding to a range
of impact parameters.

TT



/Y R,.. vs.N
J dAu

coll

Again, significant suppression
only at forward rapidity.

Possible hint of a trend w.r.t.
N_,» at forward and mid-rapidity,
but we are hitting the limits of
our Run-3 statistics. Looking
forward to Run-8 result

(QM2009?).
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A More Data-Driven Projection

However, if we do not want to assume either of the previous models, then
we may try a different approach.

In this case we assume that the modification factor depends only on the
radial position in the nucleus. We can then use the measured R, , vs.
impact parameter to constrain this 1. We also appropriately incorporate
the statistical and systematic errors on the data'.

R is the modification on J/ Y due to one Au nucleus, so we take
R(+y)*R(-y) for AutAu collisions.

'For details of statistical analysis method,
see poster by Jamie Nagle.

For more details see:
Proposal:  R. Granier de Cassagnac, hep-ph/0701222.
Calculation: A.Adare et al., arXiv:0711.3917
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Data-driven Projection to Au+Au

Larger uncertainty bands than those from nuclear-modified PDFs and G, ey I
this case we cannot rule out Aut+Au suppression entirely from cold nuclear
matter effects, within the statistical and systematic uncertainties.

It should be noted that contrary to the previous Aut+Au projection, these
uncertainty bands are not directly correlated between rapidities.

Mi.ity

PHENIX Au+Au |y|<0.35
Data-driven Projection of CNM
Effects at mid-rapidity
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Data-driven Projection to Au+Au

Larger uncertainty bands than those from nuclear-modified PDFs and G, ey I
this case we cannot rule out Aut+Au suppression entirely from cold nuclear
matter effects, within the statistical and systematic uncertainties.

It should be noted that contrary to the previous Aut+Au projection, these
uncertainty bands are not directly correlated between rapidities.
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Should allow for a much-improved R,,, measurement in the near future,
with smaller statistical errors as well as better constrained systematic
uncertainties.



Summary

R4, Mmeasured using new p+p data and a new analysis of d+Au data at
forward, backward, and mid-rapidity, and in 4 centrality bins.

Statistically-significant suppression observed at forward rapidity.

Comparison to EKS and NDSG nuclear shadowing calculations used to
estimate Oj,,,,- EXtrapolation of these models to Au+Au do not
reproduce the full J/ % suppression at forward rapidity.

A less model-dependent extrapolation from the measured R, is unable

to constrain the CNM contribution to the measured suppression in
AutAu.

Looking forward to much better constraints on CNM effects in Run-8
results!



Backup
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Centrality in d+Au

== d-Au 0-20% Central

==== d-Au 20-40% Central

* At RHIC we are also able e
to make measurements vs. A
impact parameter. ‘ N

e In Run-3 we use 4
centrality bins, each
corresponding to a range
of impact parameters.

* We can also express the
bins in terms of the average
number of nucleon-nucleon
collisions in that bin (N_,;)-
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