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Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias Au+Au at RHIC

00 1 sTAR f T
—— hydro EOS Q

v, (%)

0.75 1
P, (GeV)

= the idea of plasma as “perfect fluid”

e but how perfect? - what if /s > 0, e.g., the conjectured /s > 1/(4r)
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Two options to study dissipative effects at RHIC

- causal viscous hydrodynamics

Israel, Stewart; ... Muronga, Rischke; Teaney; Romatschke et al; Heinz et al...

- covariant transport
Israel, de Groot,... Zhang, Gyulassy, DM, Pratt, Xu, Greiner...
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Viscous hydrodynamics

relativistic Navier-Stokes hydro: small corrections linear in gradients
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where A" = u"u” — g, V¥ = A0,

1, ¢ shear and bulk viscosities, x heat conductivity

two problems:
parabolic equations — acausal Miiller ('76), Israel & Stewart ('79) ...

instabilities Hiscock & Lindblom, PRD31, 725 (1985) ...
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Causal viscous hydro

Muller, Israel & Stewart...
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bulk pressure II, shear stress 7" heat flow ¢" treated as independent
dynamical quantities that relax toward their Navier-Stokes value on time
scales 711(e,n), 7(e,n), 7,(e,n) - corresponds to keeping not only first but
(certain) second derivatives

schematically

restores causality (for not too small 7x) telegraph eqn
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In the literature

Romatschke & Romatschke, arXiv:0706.1522:
e Au+Au, minimum bias
e initial density different for ideal and dissipative evolution

e EoS with phase transition
o Ti, = 150 MeV

Song & Heinz, arXiv:0709.0742 and 0712:3715:
e Cu+Cu, b =7 fm

e ideal gas EoS or EoS with phase transition

° Tfo = 130 MeV

Dusling & Teaney, arxiv:0710.5932:
e equations by Ottinger and Grmela
e Au+Au, b =6.5 fm

e ideal gas EoS

e Freeze-out at 7 ~ 0, u"

Chaudhuri, arXiv:0704.0134 and 0801.3180:
e Au+Au, various centralities

e initial shear from Navier-Stokes

e ideal EoS or EoS with phase transition
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n/s = 1/(4m) corrections from IS hydro
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Romatschke & Romatschke, arxiv:0706.1522

10-20% or
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504+% reduction??
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Dusling & Teaney, arxiv:0710.5932

corrections to flow or only to distributions?
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Potential caveat

Whereas Navier-Stokes is an expansion in A\/R (keeps only first derivatives),
Israel-Stewart hydro is NOT a controlled approximation (retains certain

second derivatives). For example in kinetic theory, it corresponds to Grad’s
14-moment approximation

f(x7p) ~ []- + Caﬁpo‘pﬁ]e(,u—p“uu)/T
while NS comes from the Chapman-Enskog expansion in small gradients

Edtf +e-pVf=Clf] , f=fotefitefa+..

If relaxation effects important, NS and IS are different

= control against a nonequilibrium theory is crucial
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Covariant transport

Boltzmann ..., Israel, Stewart, de Groot, ... Pang, Zhang, Gyulassy, DM, Vance, Csizmadia, Pratt, Cheng, Xu, Greiner ...

Covariant, causal, nonequil. approach - formulated in terms of local rates.

2
stcattering L n (ZC)
A = OUrel
d*x 2

e.g., I'o_o(x) =

This theory has a hydrodynamic limit (i.e., it equilibrates) Boltzmann

Parameter o controls transport coefficients and relaxation:

T
Otr

solvable numerically: HERE, utilize MPC algorithm DM & Gyulassy, NPA 697 ('02)
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In transport 1/s ~ \;, T ~ 1/(cT?)

e.g., for o =~ 50 mb (o;-~14 mb)
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vgatb:8fm

Ideal hydro vs transport

o ~ 50 mb DM & Huovinen, PRL94 ('05) n/s ~ 1/(47) DM @ QM2006
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15 — 30% reduction of v, from transport due to dissipation
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Viscous hydro vs transport

We solve the full Israel-Stewart equations, including vorticity terms from
kinetic theory, in a 241D boost-invariant scenario. Shear stress only.

Mimic a known reliable transport model:

e massless Boltzmann particles = ¢ = 3P

e only 2 <+~ 2 processes, i.e. conserved particle number

o n =4T/(50¢:)

e either o = const. = 47 mb (0. = 14 mb) < the simplest in transport
or o x 72/3 = n/s~1/(4n)

“RHIC-like” initialization:

® 70 — 0.6 fm/c
e b =8 fm
e Ty = 385 MeV and dN/dn|,—o = 1000

e freeze-out at constant n = 0.365 fm—3
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Pressure evolution in the core

T"* and T?* averaged over the core of the system, | <1 fm:

n/s ~ 1/(4m) (00(72/3)
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remarkable similarity!
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Viscous hydro elliptic flow

TWO effects: - dissipative corrections to hydro fields u*, 1. n
- dissipative corrections to thermal distributions f — fy+0f

n/s ~ 1/(4m) (00(7'2/3)

5f = fo |1+ BB

— 1deal hydro
—— visc. flow, fo
—— visec. flow, f0+6f
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calculation for o, = const ~ 15mb shows similar behavior
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Viscous hydro vs transport v
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e excellent agreement when o = const ~ 47mb
e good agreement for n/s ~ 1/(4x), i.e., o < 72/3

e BUT results sensitive to freeze-out criterion, especially at high pT
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Conclusions

Prospects for applicability of Israel-Stewart causal hydrodynamics at RHIC
look promising, based on comparisons with covariant 2 — 2 transport in
2+1D Bjorken scenario.

Dissipative effects change both flow and distributions.

Dissipation reduces vy(pr) by 20 — 30%, for n/s = 1/(4w) and conditions
expected at RHIC

NOTE: hydrodynamical results are sensitive to the freeze-out procedure

— being investigated

This is just the beginning, stay tuned.

- detailed cross-checks of other calculations, exploration of parameter space, etc, etc
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