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Initial two-particle correlations
in nucleus-nucleus collisions

François Gelis
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Outline

■ Saturation and Color Glass Condensate

■ Single gluon spectrum

■ Two gluon spectrum

■ Possible link to the ridge

(work with T. Lappi and R. Venugopalan)
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Parton saturation

⊲ assume that the projectile is big, e.g. a nucleus, and has
many valence quarks (only two are represented)

⊲ on the contrary, consider a small probe, with few partons

⊲ at low energy, only valence quarks are present in the hadron
wave function
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Parton saturation

⊲ when energy increases, new partons are emitted

⊲ the emission probability is αs

∫
dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon

⊲ at small-x (i.e. high energy), these logs need to be
resummed
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Parton saturation

⊲ as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Parton saturation

⊲ eventually, the partons start overlapping in phase-space

⊲ parton recombination becomes favorable

⊲ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
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Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

■ Number of gluons per unit area:

ρ ∼ xG
A
(x,Q2)

πR2
A

■ Recombination cross-section:

σgg→g ∼ αs

Q2

■ Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼ αsxG

A
(x,Q2

s)

πR2
A

∼ A1/3 1

x0.3
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Heavy Ion Collisions

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

■ calculate the initial production of semi-hard particles
■ provide initial conditions for hydrodynamics
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CGC degrees of freedom

■ The fast partons (large x) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t − z)/

√
2)

■ Slow partons (small x) cannot be considered static over the
time-scales of the collision process ⊲ they must be treated
as the usual gauge fields

Since they are radiated by the fast partons, they must be
coupled to the current Jµ

a by a term : AµJµ

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”
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CGC evolution

■ Evolution equation (JIMWLK) :

∂W
Y

[ρ]

∂Y
= H[ρ] W

Y
[ρ]

H[ρ] =

Z

~x⊥

σ(~x⊥)
δ

δρ(~x⊥)
+

1

2

Z

~x⊥,~y⊥

χ(~x⊥, ~y⊥)
δ2

δρ(~x⊥)δρ(~y⊥)

■ σ and χ are non-linear functionals of ρ

■ This evolution equation resums the powers of αs ln(1/x) and
of Qs/p⊥ that arise in loop corrections

■ This equation simplifies into the BFKL equation when the
color density ρ is small (one can expand σ and χ in ρ)
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CGC and Nucleus-Nucleus collisions

?
L = −1

2
trFµνFµν + (Jµ

1 + Jµ
2

︸ ︷︷ ︸
)Aµ

Jµ

■ Given the sources ρ1,2 in each projectile, how do we calculate
observables? Is there some kind of perturbative expansion?

■ Loop corrections and factorization?
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Initial particle production

■ Dilute regime : one parton in each projectile interact
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Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial

(+ pileup of many partonic scatterings in each AA collision)
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Power counting
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Power counting

■ In the saturated regime, the sources are of order 1/g

(because
〈
ρρ

〉
∼ occupation number ∼ 1/αs)

■ The order of each connected diagram is given by :

1

g2
g
# produced gluons

g
2(# loops)

■ The total order of a graph is the product of the orders of its
disconnected subdiagrams
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Single gluon spectrum
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Single gluon spectrum at LO

p

■ Leading Order = tree diagrams only
■ Tag one gluon of momentum ~p

■ Integrate out the phase-space of all the other gluons

dN

d3~p
∼

∞∑

n=0

1

n!

∫ [

d3~p1 · · · d3~pn

] ∣
∣
〈
~p ~p1 · · ·~pn

∣
∣0

〉∣
∣
2
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Single gluon spectrum at LO

■ LO results for the single gluon spectrum :

◆ Disconnected graphs cancel in the inclusive spectrum

◆ At LO, the single gluon spectrum can be expressed in
terms of classical solutions of the field equation of motion

◆ These classical fields must obey boundary conditions

dN

d3~p
∼ lim

t→+∞

∫

d3~xd3~y ei~p·(~x−~y) · · · Aµ(t, ~x) Aν(t, ~y)

[
Dµ,Fµν

]
= Jν

lim
t→−∞

Aµ(t, ~x) = 0
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y

A

■ Note : the gluon spectrum can be seen as a functional of the
value of the classical field just above the backward
light-cone :

dN

d3~p
= F [A]
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Single gluon spectrum at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

sΛ/Tk
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T
k2

)d
N

/d
2
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■ Important softening at small k⊥ compared to pQCD (saturation)
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Initial fields

Lappi, McLerran (2006)

■ Before the collision, the chromo-~E and ~B fields are localized
in two sheets transverse to the beam axis

■ Immediately after the collision, the chromo-~E and ~B fields
have become longitudinal :

0 0.5 1 1.5 2
g

2µτ

0

0.2

0.4

0.6
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[(
g2 µ)

4 /g
2 ]

B
z
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E
z

2

B
T

2

E
T

2



Gluon saturation

Single gluon spectrum

● Leading Order

● Next to Leading Order

Two gluon spectrum

Summary

CERN

François Gelis – 2008 QM 2008, Jaipur, February 2008 - p. 22

Single gluon spectrum at NLO

p

■ Next to Leading Order = 1-loop diagrams

■ Connected diagrams only

■ Expressible in terms of classical fields, and small fluctuations
about the classical field, both with retarded boundary
conditions
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y

■ Their contribution can be written as a perturbation of the initial
fields on the light-cone

dN

d3~p

˛

˛

˛

˛

NLO

∼
h1

2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv

i dN

d3~p

˛

˛

˛

˛

LO

⊲ Tu is the generator of shifts of the initial field at the point ~u :

F [A + a] ≡
h

exp

Z

~u∈LC

a(~u)Tu

i

F [A]
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y x y

■ The loop correction can also be below the light-cone :

dN

d3~p

˛

˛

˛

˛

NLO

∼
h1

2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN

d3~p

˛

˛

˛

˛

LO

■ At leading log, one gets the JIMWLK Hamiltonian H[ρ], and one
can prove the following factorization theorem

fi

dN

d3~p

fl

LLog

=

Z

[Dρ1 Dρ2] W
Ybeam−y

[ρ1] W
Ybeam+y

[ρ2]
dN

d3~p

˛

˛

˛

˛

LO
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Two gluon spectrum
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Two gluon spectrum at LO

p
q

■ Leading Order = tree diagrams only
■ Tag two gluons of momenta ~p and ~q

■ Integrate out the phase-space of all the other gluons

d2N

d3~pd3~q
∼

∞∑

n=0

1

n!

∫ [

d3~p1 · · · d3~pn

] ∣
∣
〈
~p~q ~p1 · · ·~pn

∣
∣0

〉∣
∣
2
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Two gluon spectrum at LO

■ LO results for the double gluon spectrum :

◆ Disconnected graphs cancel in the quantity

d2N

d3~pd3~q
− dN

d3~p

dN

d3~q

◆ At LO, this quantity is made of tree diagrams, whose sum
can be expressed in terms of the retarded classical field
Aµ(x) and of small fluctuations ηµ

±k(x) above the classical
field, also with retarded boundary conditions :

[
Dµ,

[
Dµ, ην

±k

]]
−

[
Dµ,

[
Dν , ηµ

±k

]]
− ig

[
ηµ
±k,Fµ

ν
]

= 0

lim
t→−∞

ηµ
±k(t, ~x) = ǫµ(k) e±ik·x
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Two gluon spectrum at LO

■ The structure of the 2-gluon correlation at LO is :

d2N

d3~pd3~q
− dN

d3~p

dN

d3~q
∼

t→+∞

∫

~k

∫

~x,~y,~u,~v

ei~p·(~x−~u) e−i~q·(~y−~v) · · ·

· · · Aµ(t, ~x)Aν(t, ~y)ηρ
−k(t, ~u)ησ

+k(t, ~v)

■ Diagrammatically, this corresponds to graphs such as :

k

x u v y



Gluon saturation

Single gluon spectrum

Two gluon spectrum

● Leading Order

● The ridge

● NLO and factorization

Summary

CERN

François Gelis – 2008 QM 2008, Jaipur, February 2008 - p. 28

Possible explanation of the ridge

■ 2-hadron correlation in central AA collisions (STAR, 2006)
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φ∆

N¯
 (

r ˆ 
− 

1)

η ∆
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Possible explanation of the ridge

■ In the vacuum, the Fourier modes of the fluctuations ηµ
±k(x)

are either zero or delta functions :
Z

~x

e
∓i~p·~x · · · ηµ

±k(x) = (2π)32Epδ(~p − ~k)

⊲ gluon correlations can only be local in (~p, ~q) in the dilute regime

■ In AA collisions, these fluctuations propagate on top of a
classical color field (solution of the Yang-Mills equations)
◆ In the fluctuations Fourier modes, ~k is the initial momentum of a

colored particle moving on top of this electric field, and ~p its final
momentum

z 

t

k

p
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Possible explanation of the ridge

■ In the vacuum, the Fourier modes of the fluctuations ηµ
±k(x)

are either zero or delta functions :
Z

~x

e
∓i~p·~x · · · ηµ

±k(x) = (2π)32Epδ(~p − ~k)

⊲ gluon correlations can only be local in (~p, ~q) in the dilute regime

■ In AA collisions, these fluctuations propagate on top of a
classical color field (solution of the Yang-Mills equations)
◆ In the fluctuations Fourier modes, ~k is the initial momentum of a

colored particle moving on top of this electric field, and ~p its final
momentum

◆ If the background field has a strong electric field in the longitunal
direction (and small transverse components), these Fourier
modes have support for kz quite different from pz, while ~p⊥ ≈ ~k⊥

◆ When inserted into the formula for the 2-gluon correlations, the
correlation is elongated in the z direction, and remains narrow in
the transverse direction
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NLO corrections and factorization

■ Many terms to evaluate at 1-loop (work in progress with
T. Lappi and R. Venugopalan)

■ Recall the structure of the tree-level terms :

k

x u v y

T T
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NLO corrections and factorization

■ Many terms to evaluate at 1-loop (work in progress with
T. Lappi and R. Venugopalan)

■ Recall the structure of the tree-level terms :

k

x u v y

■ They can be rewritten as a perturbation of the initial
conditions in the product of two 1-particle spectra :

d2N

d3~pd3~q
−

dN

d3~p

dN

d3~q

˛

˛

˛

˛

LO

=
1

2

Z

~u,~v∈LC

Σ(~u, ~v)

»

Tu

dN

d3~p

–

LO

×

»

Tv

dN

d3~q

–

LO
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NLO corrections and factorization

■ Based on this Leading Order expression, one can conjecture
the following factorization formula for the Leading Log
expression of the 2-gluon correlation :

〈
d2N

d3~pd3~q
− dN

d3~p

dN

d3~q

〉

LLog

=

∫

[Dρ1 Dρ2] W
Ybeam−yp

[ρ1] W
Ybeam+yq

[ρ2]

×1

2

∫

[Dρ′1 Dρ′2]

∫

~u,~v∈LC

Σyp−yq
(~u, ~v|ρ′1, ρ′2)

×
[

Tu

dN

d3~p
(1, 2′)

]

LO

×
[

Tv

dN

d3~q
(1′, 2)

]

LO

◆ Interpretation :

Y

pq

ρ1ρ2 ρ1
’ ρ2

’
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NLO corrections and factorization

■ Based on this Leading Order expression, one can conjecture
the following factorization formula for the Leading Log
expression of the 2-gluon correlation :

〈
d2N

d3~pd3~q
− dN

d3~p

dN

d3~q

〉

LLog

=

∫

[Dρ1 Dρ2] W
Ybeam−yp

[ρ1] W
Ybeam+yq

[ρ2]

×1

2

∫

[Dρ′1 Dρ′2]

∫

~u,~v∈LC

Σyp−yq
(~u, ~v|ρ′1, ρ′2)

×
[

Tu

dN

d3~p
(1, 2′)

]

LO

×
[

Tv

dN

d3~q
(1′, 2)

]

LO

◆ The function Σyp−yq
(~u, ~v|ρ′

1, ρ
′
2) resums the large logs that

arise when the rapidity between the two gluons is large :

Evol. equation : ∂
Y
Σ

Y
=???

Init. condition : ΣY =0(~u, ~v|ρ′
1, ρ

′
2) = Σ(~u, ~v)δ(ρ1 − ρ

′
1)δ(ρ2 − ρ

′
2)
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Summary

■ The single gluon spectrum at LO involves only retarded
classical fields

■ The double inclusive spectrum at LO involves classical fields
and small fluctuations, both with retarded boundary
conditions

■ Because the classical ~E field is longitudinal shortly after the
collision, deformation of the 2-gluon correlation function in
the η direction, that may cause the ridge

■ Factorization :
◆ Works (as expected) for the single inclusive gluon spectrum
◆ More complicated for the 2-gluon spectrum when there is a large

rapidity interval between the two gluons (the 1-loop corrections
to the 2-gluon spectrum must be fully evaluated to assess that)

■ Note : with a complete knowledge of the 1- and 2-gluon
initial spectra, one could in principle build a CGC-based
event generator for AA collisions, that has the correct
correlations up to 2 particles (but not beyond that)
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Upcoming workshop

Initial Conditions in Heavy-Ion Collisions

QCD at high parton densities

■ Place : International Center, Dona Paula, Goa, India
■ Dates : September 1-22, 2008
■ School : September 8-12, 2008
■ Organizers : R. Gavai, FG, S. Gupta, R. Venugopalan
■ Webpage : http://theory.tifr.res.in/ qcdinit/
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