

Production of Direct Photons in p+Pb and p+C Collisions at $\sqrt{s_{NN}} = 17.4 \text{ GeV}$

Christoph Baumann University of Münster Germany for the WA98 Collaboration

Direct Photons

- Production of photons in heavy ion collisions
 - Decay photons from meson decays
 - Direct photons

Nestfälische Nilhelms-Universität

$$\gamma_{\text{inclusive}} = \gamma_{\text{decay}} + \gamma_{\text{direct}}$$

All photons not originating from decays

Pb+Pb Results of WA98

 Significant direct photon signal for p_τ >1.5 GeV

/ILHELMS-UNIVERSITÄT

Is there a thermal contribution to the direct photon spectrum?

- pQCD has large uncertainties at these energies
- Previously available p+A data at 19.4 GeV
 - only for $p_T > 2 \text{ GeV}$
 - deviations between data sets
 - large additional uncertainty due to x_T-scaling to 17.3 GeV

Basic picture of direct photon production:

• Prompt direct photons

Vestfälische Vilhelms-Universität

- Hard parton-parton collisions
- Depend on PDF of nuclei
- Can be understood by pQCD at high p_{T}
- But: Large systematic uncertainties at low p_T
- Thermal direct photons
 - Produced in thermally equilibrated phase (HG,QGP)
 - Depend on thermal momentum distribution of thermalized medium

- Expected to be dominant at low p_{T}

• Other contributions: Pre-equilibrium photons, fragmentation ...

Direct Photons

PDF $\times pQCD \times \delta$

Direct Photons

Basic picture of direct photon production:

• Prompt direct photons

Nestfälische Nilhelms-Universität

- Hard parton-parton collisions
- Depend on PDF of nuclei
- Can be understood by pQCD at high p_{T}
- But: Large systematic uncertainties at low p_T
- Thermal direct photons
 - Produced in thermally equilibrated phase (HG,QGP)
 - Depend on thermal momentum distribution of thermalized medium
 - Expected to be dominant at low p_{T}
- Cannot be separated in A+A measurement
- A direct photon measurement in p+A collisions can help to set limits on prompt photon contribution in A+A

10¹

 10°

10⁻¹

10⁻²

 10^{-3}

10⁻⁴

 10^{-5}

 10^{-6}

a₀ dN√d³q [GeV^{-2.}

WA98 Experiment

Westfälische Wilhelms-Universität

MÜNSTER

Analysis Overview

- Inclusive photons: $\gamma_{\text{inclusive}} = \gamma_{\text{direct}} + \gamma_{\text{decay}}$
- $\gamma_{direct} << \gamma_{decay}$: Difficult to extract significant signal
- Extraction of direct photons:

$$\gamma_{direct} = \gamma_{inclusive} - \gamma_{decay} = (1 - \frac{1}{R_{\gamma}})\gamma_{inclusive}$$
Double ratio:
$$R_{\gamma} = \frac{(\gamma/\pi^{0})_{meas}}{(\gamma/\pi^{0})_{decay}}$$

$$N_{All}^{\gamma}$$

$$N_{Decay}^{\gamma}$$

• Advantage:

UHFLMS-UNIVERSITÄT

Systematic uncertainties in γ/π^0 -ratio cancel out partially

 N^{γ}_{Direct}

Neutral Pion Spectra

- Final WA98 neutral pion spectra for p+Pb and p+C
- p+C data compatible with scaled p+p pQCD calculation
 - but: large pQCD uncertainties: need measured reference

Nestfälische Nilhelms-Universität **R**_{pc}: Compared to p+p parameterization by Blattnig et.al. (Phys. Rev. D62, 094030(2000))

- Has been used for search for jet-quenching at SPS
- Agreement between N_{coll}-scaled p+C and Blattnig

 \rightarrow supports use of Blattnig as reference

Westfälische Wilhelms-Universität R_{pPb} and

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Nuclear Modification Factor

Inclusive Photon Spectra

back to direct photons: inclusive photon spectra

Triggered data from $p_{\tau} > 1.2 \text{ GeV}$

Corrected for:

- Acceptance
- Efficiency
- Conversion
- Contaminations:
 - Charged Particles
 - Neutrons

Nestfälische Nilhelms-Universität

Simulated Photons

- Decay photon spectra from monte carlo
- Input: π^0 spectrum

Westfälische Wilhelms-Universität

ΛΰΝςτει

- Simulated mesons: π^0 , η , ω , η'
- $\eta/\pi^0 = 0.48 \pm 0.02$

Statistics & Systematics

Systematic Uncertainties

P _T	2 GeV	
Inclusive Photon Spectrum	5%	
Pion Spectrum	10%	(γ/π^0)
No-Target Correction	2%	() meas
Energy Scale	5%	
Acceptance	2%	
m _⊤ -Scaling	3%	$>$ (γ / π^{0}) _{backg}
Unaccounted Decays	1%	
Fit to Pions, p+Pb	20%	$(\sqrt{\pi^0})$ $((\sqrt{\pi^0})$
Fit to Pions, p+C	10%	/ / / meas' / // backg

Individual errors are added in quadrature

Pb+Pb Data, MB:Central: $6.7 \cdot 10^6$ Peripheral: $4.3 \cdot 10^6$

Westfälische Wilhelms-Universität

MÜNSTER

	Analyzeu Events		
	p+C	p+Pb	
MB Events	1.2 · 10 ⁶	1.0 · 10 ⁶	
HEP Events	1.5 · 10 ⁶	0.5 · 10 ⁶	
Corresponding MB	3.9 · 10 ⁷	8.2 · 10 ⁶	

Analyzad Eyente

Westfälische Wilhelms-Universität Münster

Photon Excess: p+Pb

No significant excess in double ratio within errors

Christoph Baumann, Universität Münster

Photon Excess: p+C

No significant photon excess in p_{τ} region relevant for thermal contribution

Westfälische Wilhelms-Universität

Aünster

Upper Limits on Direct Photons

Westfälische Wilhelms-Universität

Münster

Comparison with Central Pb+Pb

→ N_{coll} scaled p+Pb data consistent with central Pb+Pb data within errors

Westfälische Wilhelms-Universität

AÜNSTER

Comparison with Central Pb+Pb

→ N_{coll} scaled p+C data consistent with central Pb+Pb data within errors
 → No further limit on prompt photon production can be set

Nestfälische Nilhelms-Universität

Summary

- Neutral pion production in p+A collisions at $\sqrt{s_{NN}}$ = 17.4 GeV
 - Significant suppression in most central Pb+Pb collisions with both p+A data sets as a reference

Production of direct photons in same data sets

- Upper limits

Westfälische Wilhelms-Universität

could be extracted up to $p_{\tau} \approx 3 \text{ GeV}$

 Upper limits on prompt photons derived from p+A above Pb+Pb data: No conclusions about thermal component in Pb+Pb

Westfälische Wilhelms-Universität Münster

Backup

Christoph Baumann, Universität Münster

```
08.02.2008
```

Westfälische Wilhelms-Universität

Münster

Christoph Baumann, Universität Münster

21

Westfälische Wilhelms-Universität Münster

γ / π^0 Ratio: p+Pb

Westfälische Wilhelms-Universität Münster

Comparison with Peripheral Pb+Pb

Westfälische Wilhelms-Universität

Nünster