Is there Quark Matter in (Low-Mass) Pulsars?

Jürgen Schaffner-Bielich

Institut für Theoretische Physik/Astrophysik

International Conference on Ultra-Relativistic Nucleus Nucleus Collisions Quark Matter 2008, Jaipur, India, February 4-10, 2008

Is there Quark Matter in (Low-Mass) Pulsars?

work done by:

Matthias Hempel, Giuseppe Pagliara, and Irina Sagert

Institut für Theoretische Physik/Astrophysik

International Conference on Ultra-Relativistic Nucleus Nucleus Collisions Quark Matter 2008, Jaipur, India, February 4-10, 2008

Phase Transitions in QCD

- early universe at small baryon density and high temperature
- neutron star matter at small temperature and high density
- first order phase transition at high density (not deconfinement)!
- probed by heavy-ion collisions with CBM@FAIR!

Nuclear Equation of State as Input in Astrophysics

- ullet supernovae simulations: T=1–50 MeV, $n=10^{-10}$ – $2n_0$
- **proto-neutron star:** T = 1 50 MeV, $n = 10^{-3} 10n_0$
- **9** global properties of neutron stars: T = 0, $n = 10^{-3}$ – $10n_0$
- neutron star mergers: T = 0 175 MeV, $n = 10^{-10} 10n_0$

Hunting down strange quark matter in the heavens

Coming of age! Some suggestive signals:

- 'exotic' mass-radius relation of compact stars
- rapidly rotating pulsars due to r-mode stability window
- enhanced cooling of neutron stars
- gamma-ray bursts by transition to strange quark matter (GRBs without a supernova, late x-ray emission, long quiescent times)
- gravitational wave signals of phase transitions
 - binary neutron star collisions
 - collapse of neutron star to a hybrid star
 - r-mode spin-down of hybrid stars
- core-collapse supernovae?

X-Ray burster EXO 0748–676: Quarks are alive and kicking!

- redshifted spectral lines measured (Cottam, Paerels, Mendez (2002))
- analysis of Özel (Nature 2006): $M \geq 2.10 \pm 0.28 M_{\odot}$ and $R \geq 13.8 \pm 1.8$ km, claims: 'unconfi ned quarks do not exist at the center of neutron stars'!
- reply by Alford, Blaschke, Drago, Klähn, Pagliara, JSB (Nature 445, E7 (2007)): limits would rule out soft equations of state, not quark stars or hybrid stars!

The EoS for Quark Matter

Phases in Quark Matter (Rüster et al. (2005))

- fi rst order phase transition based on symmetry arguments!
- phases of color superconducting quark matter in β equilibrium: normal (unpaired) quark matter (NQ), two-flavor color superconducting phase (2SC), gapless 2SC phase, color-flavor locked phase (CFL), gapless CFL phase, metallic CFL phase

(Alford, Rajagopal, Wilczek, Reddy, Buballa, Blaschke, Shovkovy, Drago, Rüster, Rischke, Aguilera, Banik, Bandyopadhyay, Pagliara, . . .)

Phase Transition and Stability of Compact Stars

(Giuseppe Pagliara and JSB, arXiv:0711.1119)

- use toy model EoS for quark matter: $p=a\cdot\epsilon$ with constant a=1/3 and a given energy density jump
- use RMF model (here set GM3) for the low-density nuclear EoS
- phase transition close to the maximum: always unstable solutions for the quark core

Phase Transition and Stability of Compact Stars II

(Giuseppe Pagliara and JSB, arXiv:0711.1119)

- change the critical energy density for the phase transition
- phase transition close to the maximum mass: unstable quark core
- onset of phase transition at moderate densities: stable quark core

Color-superconducting quark matter in the NJL model

$$p = \frac{1}{2\pi^2} \sum_{i=1}^{18} \int_0^{\Lambda} dk \, k^2 |\epsilon_i| + 4K\sigma_u \sigma_d \sigma_s - \frac{1}{4G_D} \sum_{c=1}^{3} |\Delta_c|^2$$
$$-2G_S \sum_{\alpha=1}^{3} \sigma_{\alpha}^2 + \frac{1}{4G_V} \omega_0^2 + p_e$$

- use Nambu–Jona-Lasinio model for describing quark matter
- describes both dynamical quark masses (quark condensates σ) and the color-superconducting gaps Δ
- so far 'best' model in the fi eld (Rüster et al. (2005))
- parameters: cutoff, scalar and vector coupling constants G_S , G_V , diquark coupling G_D , 't Hooft term coupling K
- ullet fi xed to hadron masses, pion decay constant, free: $G_{\!\!D}$ and G_V

Hybrid Star Matter

(Giuseppe Pagliara and JSB, arXiv:0711.1119)

- fix the pressure in vacuum (B_0) or at the chiral phase transition (B_*)
- fi rst case: phase transition to CFL quark matter (left plot)
- second case: two phase transition to 2SC then to CFL phase (right plot)

Hybrid Star Mass-Radius Diagram

(Giuseppe Pagliara and JSB, arXiv:0711.1119)

- phase transition directly to CFL phase: unstable fi rst then stable branch
- two phase transitions: two kinks in curve, also two stable solutions
- new stable solution possible → third family of compact stars!
- two phase transitions can be present in compact star matter: implications for supernovae?

Third Family of Compact Stars

Gerlach (1968), Kämpfer (1981), Haensel and Proszynski (1982), Glendenning and Kettner (2000), ...

(Schertler, Greiner, JSB, Thoma (2000))

- third solution to the TOV equations besides white dwarfs and neutron stars, solution is stable!
- generates stars more compact than neutron stars
- possible for any fi rst order phase transition!

Signals for a Third Family/Phase Transition?

- mass-radius relation: rising twins (Schertler et al., 2000)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)
- collapse of a neutron star to the third family? (gravitational waves, γ -rays, neutrinos)
- r-mode instabilities: millisecond pulsars, gravitational wave burst
 (Drago, Pagliara, Berezhiani, 2006), ...
- gamma-ray bursts with late x-ray emission, long quiescent times (Drago and Pagliara, 2007), ...
- secondary shock wave in supernova explosions?
- gravitational waves from colliding neutron stars?

The hot EoS for Supernovae

Composition of Supernova Matter (Low Densities)

(Matthias Hempel)

- need thermodynamic consistent low-density EoS
- gas of nucleons, nuclei and electrons (plus Coulomb-lattice)
- here: supernovae matter for a proton fraction $Y_p = 0.4$ and T = 5 MeV
- ullet broad distribution, many exotic nuclei \Longrightarrow relation to FAIR physics!

Phase Transition to Quark Matter for Astros

(Irina Sagert and Giuseppe Pagliara)

- start of the mixed phase at quite low densities due to β -equilibrium, strange quark matter is more stable than nucleon matter (using RMF model TMA)
- even lower critical densities for isospin-asymmetric matter (low proton fraction Y_p) due to asymmetry energy for nucleons
- quark matter favoured in hot matter due to the QCD phase diagram
- production of quark matter in supernovae at bounce possible!

Phase Transition Line to Quark Matter for Astros

(Irina Sagert and Giuseppe Pagliara)

- plot of the phase transition line of temperature versus chemical potential
- ullet phase transition nearly independent on the proton fraction Y_p
- phase transition line bends towards low chemical potentials for large T

Impact on Mass-Radius Diagram of Cold Neutron Stars

(Irina Sagert and Giuseppe Pagliara)

- presence of quark matter can change drastically the mass-radius diagram
- third family of solution for certain bag constants
- unique feature: small radii for moderate neutron star masses!

Summary

- the phase transition to quark matter leads to a rich variety of astrophysical signals involving compact stars and supernovae
- do not look for supermassive neutron stars!
 - supermassive neutron stars well above $2.3M_{\odot}$: hard to achieve with *any* realistic modern EoS
 - maximum mass around $2M_{\odot}$: can be normal nuclear matter or a hybrid star with quark matter
 - maximum mass of $1.5M_{\odot}$ (well below $2M_{\odot}$): must involve exotic matter, hyperons or quarks!
- look for light pulsars and measure the radius!
- quark matter likely to be formed in core collapse supernovae!
- opportunities for a cross-check between heavy-ion physics and relativistic astrophysics!

Back-Up Slides

Phase Transition Density to Quark Matter for HICs

(Irina Sagert and Giuseppe Pagliara)

- **•** no β -equilibrium (just up-/down-quark matter)
- large critical densities in particular for isospin-symmetric matter (proton fraction $Y_p = 0.5$)
- production of ud-quark matter unfavoured for HICs at small T and high density

Phase Transition Line to Quark Matter for HICs

(Irina Sagert and Giuseppe Pagliara)

- phase transition line for ud-quark matter
- phase transition is at larger chemical potentials for ud-quark matter
- 'quasi-consistent' picture for freeze-out parameters at low energies:

SIS: $\mu_{f.o.} = 700 - 800$ MeV, $T_{f.o.} = 50 - 70$ MeV

AGS: $\mu_{f.o.} \sim 500$ MeV, $T_{f.o.} \sim 120$ MeV

Phase Transition Line to CSC Quark Matter

(Giuseppe Pagliara)

- plot of the chiral phase transition line within the NJL model
- ightharpoonup phase transition is at small chemical potentials, in particular for $Y_p=0.5$
- 2SC phase likes symmetric matter, as only u- and d-quarks pair (CFL phase is at higher densities)

Supermassive Pulsar in Globular Cluster?

(Freire et al., arXiv:0711.0925v2 (2007))

- measurement of periastron advance of the pulsar PSR J1748-2021B
- inclination angle i of orbital plane unknown
- statistical analysis (for angle i): $M=2.74\pm0.21M_{\odot}$ (1σ) and $M>2.0M_{\odot}$ (99% c.l.)
- where $M \sim 1.4 M_{\odot}$ is two neutron stars with $M \sim 1.4 M_{\odot}$ in the st
- measurement of a second GR effect needed to draw a firm conclusions!

Probes Using X–Ray Bursts

(Strohmayer (2004))

- X-ray bursts from accreting neutron stars originating from the surface
- spectral profi le is modifi ed from space-time warpage
- gives a model independent mass and radius!
- Constellation-X will determine the mass-radius ratio to within 5%! (Bhattacharyya et al. 2004)

Supernova Explosions

- stars with a mass of more than 8 solar masses end in a (core collapse) supernova (type II)
- new generation of simulation codes: 3D, Boltzmann neutrino transport
- Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing? (Buras, Rampp, Janka, Kifonidis, PRL 2004)

'... the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state'!

Supernova Explosions

- stars with a mass of more than 8 solar masses end in a (core collapse) supernova (type II)
- new generation of simulation codes: 3D, Boltzmann neutrino transport
- Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing? (Buras, Rampp, Janka, Kifonidis, PRL 2004)

SASI: standing accretion shock instability, the models *do* explode! (Janka, GSI Theory Seminar, July 11, 2007)

Masses of Pulsars (Stairs, 2006)

- more than 1600 pulsars known
- best determined mass: $M = (1.4414 \pm 0.0002) M_{\odot}$ for the Hulse-Taylor pulsar (Weisberg and Taylor, 2004)
- ho smallest known mass: $M=(1.18\pm0.02)M_{\odot}$ for pulsar J1756-2251 (Faulkner et al., 2005)

Massive Neutron Stars in Pulsar-White Dwarf Systems?

(Nice, Splaver, Stairs (2003))

- shaded area: from theoretical limits for white-dwarf companion
- Nice et al. (2005): $M=2.1\pm0.2M_{\odot}$ (1σ) and $M=1.6-2.5M_{\odot}$ (2σ)!!!
- David Nice and Ingrid Stairs, private communication (2007): $M = 1.14 1.40 M_{\odot}!!!$

RXJ 1856: Neutron Star or Quark Star? (Trümper et al. (2003), Ho et al. (20

- two-component blackbody: small soft temperature, so as not to spoil the x-ray
- this implies a rather LARGE radius so that the optical flux is right!
- lower limit for radiation radius: $R_{\infty}=R/\sqrt{1-2GM/R}=17$ km (d/140 pc)
- redshift $z_g pprox 0.22$: R pprox 14 km and $M pprox 1.55 M_{\odot}$
- largest uncertainty in distance d

Spectral Model for Neutron Star X7

(Heinke, Rybicki, Narayan, Grindlay (2006)

- improved hydrogen
 atmosphere: adjusted surface
 gravity g_s (solid blue lines, 90%
 c.l.) vs. fi xed g_s (pink dotted lines)
- for fi xed radius of 10km: $M = 2.20^{+0.03}_{-0.16} M_{\odot} \text{ (90\% c.l.)}$ for fi xed mass of $1.4 M_{\odot}$: $R = 14.5^{+1.8}_{-1.6} \text{ km (90\% c.l.)}$
- nearly no constraint on the mass for $R \approx 14$ km!
- any mass from $0.5 M_{\odot}$ to $2.3 M_{\odot}$ allowed!

Spectral Modelling of Neutron Stars in Globular Clusters

(Webb and Barret (2007)

- spectral modelling of neutron stars in M13 (dotted blue line) and ω Cen (solid red line) and X7 in 47 Tuc (dash-dotted green line) all 99% c.l.
- mass-radius curve has to pass through all three regions: data from M13 demands a small mass

The EoS from Heavy-Ion Data versus Astro Data

Kaon production in heavy-ion collisions

Sturm et al. (KaoS collaboration), PRL 2001

Fuchs, Faessler, Zabrodin, Zheng, PRL 2001

- Kaons produced by associated production:
 NN→ NΛK, NN→NNKK
- in-medium processes (rescattering): $\pi N \to \Lambda K$, $\pi \Lambda \to N \overline{K}$
- nuclear matter is compressed up to $3n_0!$
- long mean-free path of kaons: kaons can escape high density matter

Confirmed KaoS data analysis: the nuclear EoS is soft!

The Collaboration

- kaon production (K^+) in heavy-ion collisions at subthreshold energies
- double ratio: multiplicity per mass number for C+C collisions and Au+Au collisions at 0.8 AGeV and 1.0 AGeV (rather insensitive to input parameters)
- only calculations with a compression modulus of $K_N \approx 200$ MeV can describe the data (Hartnack, Oeschler, Aichelin, PRL 2006; KaoS collaboration, 2007)

⇒ the nuclear equation of state is SOFT!

Probing the EoS: Empirical Nucleon-Nucleon Interaction

Ansatz for the energy per particle:

$$\epsilon/n = m_N + E_0^{kin} + \frac{A}{2} \cdot u + \frac{B}{\sigma + 1} u^{\sigma} + S_0 \cdot u^{\alpha} \cdot \left(\frac{n_n - n_p}{n}\right)^2$$

where $u=n/n_0$. The parameters A, B, σ are fixed by nuclear matter properties n_0 , E/A, and the compression modulus K, the asymmetry term by the asymmetry energy S_0 at n_0 , α varies between 0.7 and 1.1 (B.-A. Li et al. 2007).

The pressure is determined by the thermodynamic relation

$$P = n^2 \frac{d}{dn} \left(\frac{\epsilon}{n}\right)$$

EoS used as input in transport model calculations.

(Note: the equation of state can become acausal for $\sigma > 2$.)

Empirical Nucleon-Nucleon Interaction: Maximum Masses

(Irina Sagert)

- small variation of the maximum mass with the compression modulus K and the asymmetry energy for normal density dependence $\alpha=1.0,1.1$
- strong dependence on the compression modulus K for $\alpha = 0.7$
- \blacksquare maximum mass $M \ge 1.6 M_{\odot}$ for $K_0 > 160$ MeV!
- ullet maximum mass $M \geq 2 M_{\odot}$ for $K_0 > 160$ MeV and lpha = 1.0, 1.1!

Empirical Nucleon-Nucleon Interaction II

- (Irina Sagert)
- ullet slight dependence on asymmetry energy S_0 , up to $\Delta M=\pm 0.1 M_{\odot}$ for low K
- ho maximum central density $n_c=(7\div 8)n_0$ for $\alpha=1.0,1.1$ and $10n_0$ for $\alpha=0.7$
- EoS causal up to $K_0=340$ MeV ($M=2.6M_{\odot}$) for $\alpha=1.0,1.1$, and up to K=280 MeV for $\alpha=0.7$
- \blacksquare A $2M_{\odot}$ pulsar mass is compatible with a 'soft' EoS!

Hot Nuclear Equation of State

(Matthias Hempel)

- taken into account nucleons, electrons and all nuclei
- input: 2003 update of nuclear mass data
- state-of-the-art (relativistic) nuclear model for unknown nuclear masses
- Coulomb, shell-effects, pairing, axial deformations included!

Quark Matter in Cold Neutron Stars

(Schertler, C. Greiner, JSB, Thoma (2000))

- phase transition to quark matter in the MIT bag model
- onset of mixed phase appears between $(1-2)n_0$ even for large values of the bag constant
- suffi ciently high densities reached in the core for a $1.3M_{\odot}$ neutron star to have quark matter

Hybrid Stars (Schertler et al. (2000))

- hybrid star: consists of hadronic and quark matter
- three phases possible: hadronic, mixed phase and pure quark phase
- composition depends crucially on the parameters as the bag constant B (and on the mass!)

- p.42