Measuring gluon shadowing with prompt photons at RHIC and LHC

François Arleo

LAPTH, Annecy

Quark Matter 2008

February 2008 - Jaipur, India

Outline

Introduction

- lacktriangle Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

Results

Summary

Motivations

- ◆ why probing small-x gluons
- why using prompt photons
- Extracting gluon distributions
 - pQCD prompt photon production in p A collisions
 - limitations
- Phenomenology
 - predictions in p A collisions at RHIC and LHC
 - ullet measuring shadowing without pp data

[FA, T. Gousset, Phys. Lett. B 660 (2008) 181, arXiv: 0707.2944]

Gluon distributions at small x

Introduction

- ullet Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

Results

Summary

The accurate knowledge of gluon density in a proton or in a nucleus is essential for two reasons

- Fundamental pQCD ingredient
 - tool for reliable predictions of hard processes at LHC
- Probe of non-linear QCD evolution
 - looking for saturation at small x

In a proton

Introduction

- ullet Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

Results

Summary

Strong activity over the last decade to probe proton densities

■ Impressive results from HERA

[H1, ZEUS]

■ Important theoretical developments in global fit analyses

[CTEQ, GRV, MRST]

In a proton

Introduction

ullet Gluon distributions at small x

In a proton

In a nucleus

Observables

Kinematics

Extracting gluon distributions

Results

Summary

Strong activity over the last decade to probe proton densities

■ Impressive results from HERA

[H1, ZEUS]

Important theoretical developments in global fit analyses

[CTEQ, GRV, MRST]

 $G^p(x,Q^2)$ fairly well known over a large kinematical range $x\sim 10^{-4} \text{--} 10^{-1} \text{ and } Q^2\sim 10 \text{--} 10^5 \text{ GeV}^2$

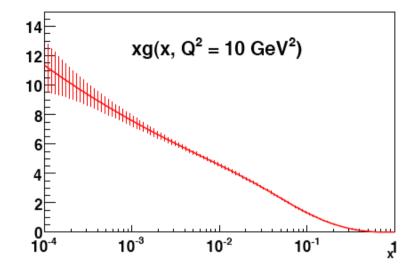
In a proton

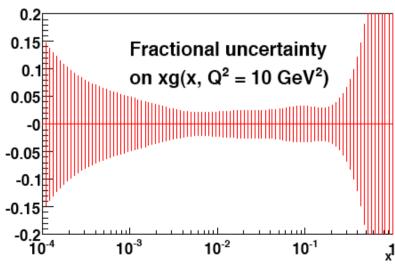
Introduction

lacktriangle Gluon distributions at small x

In a proton

In a nucleus


Observables


Kinematics

Extracting gluon distributions

Results

Summary

[From R. Thorne DIS 2007]

Introduction

- ullet Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

Results

Summary

Gluon distributions in nuclei over that in a proton

$$R_G(x, Q^2) = G_A(x, Q^2) / G_p(x, Q^2)$$

poorly constrained experimentally!

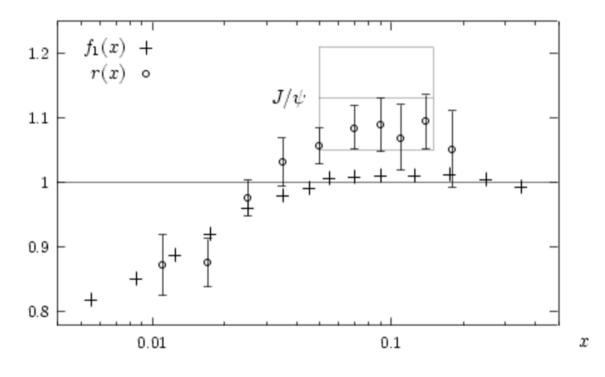
Introduction

ullet Gluon distributions at small x

In a proton

In a nucleus

Observables


Kinematics

Extracting gluon distributions

Results

Summary

From NMC data

[Gousset, Pirner 1996]

- \blacksquare Tiny constraints from the scaling violation of $F_{\scriptscriptstyle 2}^{\rm A}(x,Q^2)$
- Fairly large $x \sim 10^{-2} 10^{-1}$

Introduction

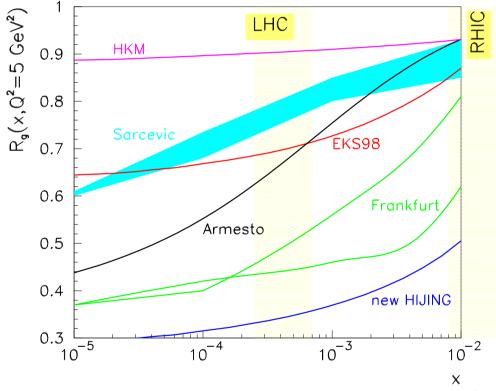
ullet Gluon distributions at small x

In a proton

In a nucleus

Observables

Kinematics


Extracting gluon distributions

Results

Summary

From global analyses of DIS and Drell-Yan data

[EKS/EPS, HKM, nDS]

[Armesto, Salgado 2003]

■ Huge uncertainties at small $x \ll 1$

Introduction

- ullet Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

Results

Summary

Gluon distributions in nuclei over that in a proton

$$R_G(x, Q^2) = G_A(x, Q^2) / G_p(x, Q^2)$$

poorly constrained experimentally!

How to probe small-x gluon shadowing at LHC ?

- which observables
- why prompt photons

Observables

Introduction

- ullet Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

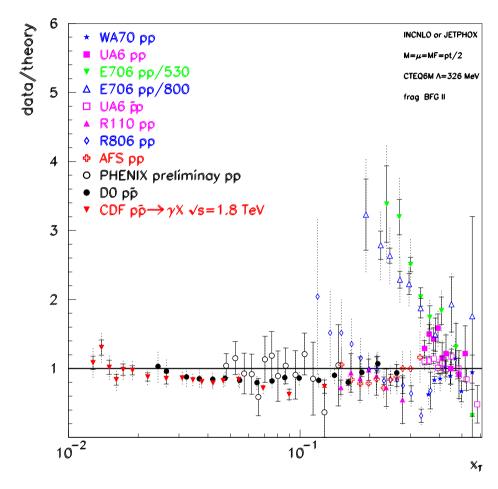
Extracting gluon distributions

Results

Summary

- Jets
 - :-) high rates, rich phenomenology, forward rapidities
 - :-(large scales $Q^2 \gtrsim 10^3 \ {\rm GeV^2}$
- Large p_{\perp} dileptons
 - :-) no strong background
 - :-(very low rates
- Heavy-bosons
 - :-) constraints on sea-quark shadowing
 - :-(large scales $Q^2 \gtrsim 10^4 \text{ GeV}^2$
- Prompt photons
 - :-) low $Q^2 \gtrsim 10-10^3$ GeV², rich phenomenology
 - :-(parton-to-photon fragmentation process

Observables


Introduction

- lacktriangle Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

Results

Summary

[Aurenche et al. 2006]

Good description of isolated/inclusive photon world-data

Observables

Introduction

- ullet Gluon distributions at small x
- In a proton
- In a nucleus
- Observables
- Kinematics

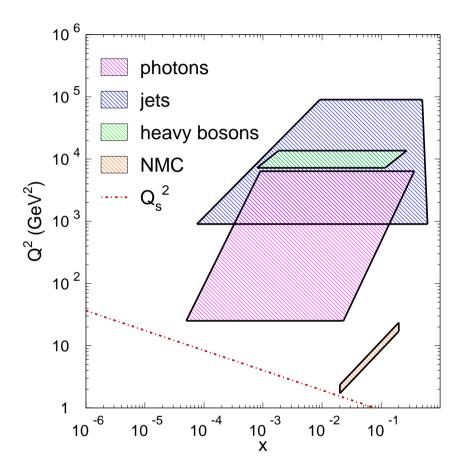
Extracting gluon distributions

Results

Summary

- Jets
 - :-) high rates, rich phenomenology, forward rapidities
 - :-(large scales $Q^2 \gtrsim 10^3 \ {\rm GeV^2}$
- Large p_{\perp} dileptons
 - :-) no strong background
 - :-(very low rates
- Heavy-bosons
 - :-) constraints on sea-quark shadowing
 - :-(large scales $Q^2 \gtrsim 10^4 \text{ GeV}^2$
- Prompt photons
 - :-) low $Q^2 \gtrsim 10-10^3$ GeV², rich phenomenology
 - :-(parton-to-photon fragmentation process

Kinematics


Introduction

- lacktriangle Gluon distributions at small x
- In a protor
- In a nucleus
- Observables
- Kinematics

Extracting gluon distributions

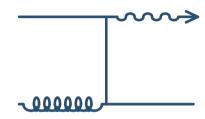
Results

Summary

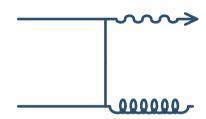
- Photons and jets are clearly complementary
- Photons cover small Q^2 where shadowing should be large

Introduction

Extracting gluon distributions


- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results


Summary

Leading-order $\mathcal{O}\left(\alpha \ \alpha_s\right)$ contributions

■ Compton scattering $q(\bar{q})$ $g \rightarrow q(\bar{q})$ γ

■ Annihilation process $q \bar{q} \rightarrow g \gamma$

At high energy, only the Compton scattering process is relevant

Introduction

Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Production cross section at LO $(x_{\perp} \equiv 2p_{\perp}/\sqrt{s}, F(x) \equiv F_2(x)/x)$

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d}y \,\mathrm{d}^2 p_\perp} = \int_{x_\perp e^y/2}^{1 - x_\perp e^{-y}/2} \mathrm{d}v$$

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d}y \, \mathrm{d}^2 p_{\perp}} = \int_{x_{\perp} e^y/2}^{1-x_{\perp} e^{-y}/2} \mathrm{d}v \qquad \left[\mathbf{F}^{\mathbf{P}} \left(\frac{x_{\perp} e^y}{2v} \right) \mathbf{G}^{\mathbf{T}} \left(\frac{x_{\perp} e^{-y}}{2(1-v)} \right) \, \hat{\sigma}(v) \right]$$

$$+G^{\mathbf{P}}\left(\frac{x_{\perp}e^{y}}{2v}\right)F^{\mathbf{T}}\left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right)\hat{\sigma}(1-v)$$

Introduction

Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Production cross section at LO $(x_{\perp} \equiv 2p_{\perp}/\sqrt{s}, F(x) \equiv F_2(x)/x)$

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}y\,\mathrm{d}^{2}p_{\perp}} = \int_{x_{\perp}e^{y}/2}^{1-x_{\perp}e^{-y}/2} \mathrm{d}v \qquad \left[F^{\mathrm{P}}\left(\frac{x_{\perp}e^{y}}{2v}\right) G^{\mathrm{T}}\left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \hat{\sigma}(v) \right.$$
$$\left. + G^{\mathrm{P}}\left(\frac{x_{\perp}e^{y}}{2v}\right) F^{\mathrm{T}}\left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \hat{\sigma}(1-v) \right]$$

Due to the fast variation of F(x) and G(x), the integrand is strongly peaked at $v \simeq 1/2$

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}y\;\mathrm{d}^2p_{\perp}} \simeq \hat{\sigma}(1/2) \left[\boldsymbol{F}^{^{\mathbf{P}}}\left(\boldsymbol{x}_{\perp}\boldsymbol{e}^{y}\right) \boldsymbol{G}^{^{\mathbf{T}}}\left(\boldsymbol{x}_{\perp}\boldsymbol{e}^{-y}\right) \right. \\ \left. + \left. \boldsymbol{G}^{^{\mathbf{P}}}\left(\boldsymbol{x}_{\perp}\boldsymbol{e}^{y}\right) \boldsymbol{F}^{^{\mathbf{T}}}\left(\boldsymbol{x}_{\perp}\boldsymbol{e}^{-y}\right) \right]$$

Introduction

Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Production cross section at LO $(x_{\perp} \equiv 2p_{\perp}/\sqrt{s}, F(x) \equiv F_2(x)/x)$

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}y\,\mathrm{d}^{2}p_{\perp}} = \int_{x_{\perp}e^{y}/2}^{1-x_{\perp}e^{-y}/2} \mathrm{d}v \qquad \left[\mathbf{F}^{\mathrm{P}}\left(\frac{x_{\perp}e^{y}}{2v}\right) \mathbf{G}^{\mathrm{T}}\left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \hat{\sigma}(v) \right.$$

$$\left. + \mathbf{G}^{\mathrm{P}}\left(\frac{x_{\perp}e^{y}}{2v}\right) \mathbf{F}^{\mathrm{T}}\left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \hat{\sigma}(1-v) \right]$$

Due to the fast variation of F(x) and G(x), the integrand is strongly peaked at $v \simeq 1/2$

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d} y \, \mathrm{d}^2 p_{\perp}} \simeq \hat{\sigma}(1/2) \left[\boldsymbol{F}^{\mathrm{P}} \left(\boldsymbol{x}_{\perp} e^y \right) \boldsymbol{G}^{\mathrm{T}} \left(\boldsymbol{x}_{\perp} e^{-y} \right) \right. + \left. \boldsymbol{G}^{\mathrm{P}} \left(\boldsymbol{x}_{\perp} e^y \right) \boldsymbol{F}^{\mathrm{T}} \left(\boldsymbol{x}_{\perp} e^{-y} \right) \right]$$

Simple relationship between prompt photon production and parton densities!

Nuclear production ratio

Introduction

Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Define the production ratio in p A collisions

$$R_{_{p\mathrm{A}}}(x_{_\perp}) = \frac{1}{A} \ \frac{\mathrm{d}^3\sigma}{\mathrm{d}y \ \mathrm{d}^2p_{_\perp}} (p + \mathrm{A} \to \gamma + \mathrm{X} \,) \Big/ \frac{\mathrm{d}^3\sigma}{\mathrm{d}y \ \mathrm{d}^2p_{_\perp}} (p + p \to \gamma + \mathrm{X} \,)$$

Most naive estimates

Around mid-rapidity

$$R_{_{p{\rm A}}}(p_{_\perp},y) \simeq \frac{1}{2} \ \left[R_{_{F_2}}(x_{_\perp}e^{-y}) \ + \ R_{_G}(x_{_\perp}e^{-y}) \right]$$

At (very) forward rapidity

$$R_{_{p\mathrm{A}}}(p_{_\perp},y) \simeq R_{_G}(x_{_\perp}e^{-y})$$

At (very) backward rapidity

$$R_{_{p\mathrm{A}}}(p_{_{\perp}},y) \simeq R_{_{F_{2}}}(x_{_{\perp}}e^{-y})$$

Limitations: fragmentation photons

Introduction

Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Photons can also be produced by fragmentation

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{frag}}(p \, A \to \gamma \, \mathrm{X})}{\mathrm{d} y \, \mathrm{d}^2 p_{\perp}} \propto \int_0^1 \, \mathrm{d} z \int_0^1 \, \mathrm{d} v \, \dots \left(x_{\perp}/z, Q^2 \right) \, D_{\gamma/k}(z, Q^2)$$

The extra integration spoils the relationship $R_{_{p\mathrm{A}}} \Leftrightarrow R_{_{F_{_{2}}}}$ and $R_{_{G}}$

Limitations: fragmentation photons

Introduction

Extracting gluon distributions

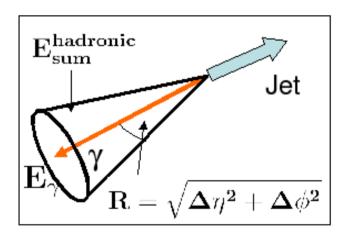
- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Photons can also be produced by fragmentation

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{frag}}(p\,A \to \gamma\,\mathrm{X}\,)}{\mathrm{d}y\,\mathrm{d}^2 p_\perp} \propto \int_0^1 \,\mathrm{d}z \int_0^1 \,\mathrm{d}v\,\ldots \left(x_\perp/z,Q^2\right) \,D_{\gamma/k}(z,Q^2)$$


The extra integration spoils the relationship $R_{_{p\mathrm{A}}} \Leftrightarrow R_{_{F_2}}$ and $R_{_G}$

We get rid of (most of) them by means of isolation criteria

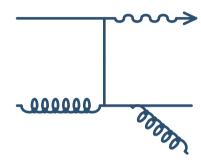
$$E_{\perp}^{\mathrm{had}} \leq E_{\perp}^{\mathrm{max}}$$

for particles in a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$

Limitations: NLO corrections

Introduction


Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

Next-to-leading order (NLO) corrections

3-body kinematics in the final state ⇒ needs to integrate over the momentum of the extra-particle radiated

Strategy

Introduction

Extracting gluon distributions

- Perturbative production
- Nuclear production ratio
- Limitations
- Strategy

Results

Summary

To illustrate/check these estimates, let's compute $R_{pA}(x_{\perp}, y)$ at NLO using nDSg nuclear PDF in p A collisions

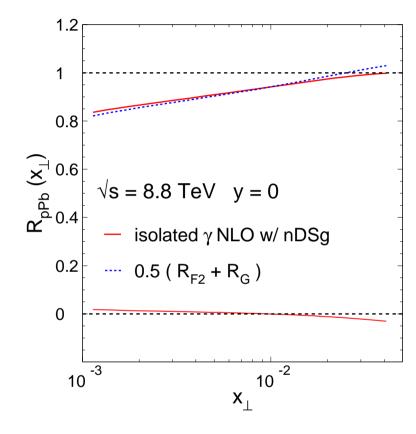
At LHC

$$\bullet \ \sqrt{s_{\scriptscriptstyle \mathrm{NN}}} = 8.8 \ \mathrm{TeV} \ \mathrm{at} \ y = 0, 2.5, -2.5$$

At RHIC

•
$$\sqrt{s_{\scriptscriptstyle \mathrm{NN}}} = 200~\mathrm{GeV}$$
 at $y=3$

Introduction


Extracting gluon distributions

Results

- LHC
- RHIC
- Shadowing without p p data
- Counting rates

Summary

Mid-rapidity

- 20% attenuation at $x_{\perp} \sim 10^{-3}$ measurable (statistically)
- \blacksquare perfect (< 2–3%) matching between $R_{_{p\mathrm{A}}}$ and nuclear density ratios

Introduction

Extracting gluon distributions

Results

Resui

LHCRHIC

Shadowing without p p data

Counting rates

Summary

Forward rapidity y = 2.5

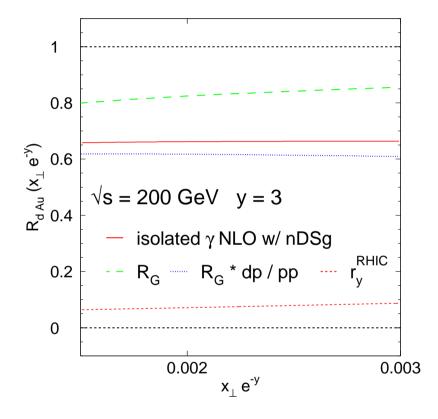
■ Gives "direct" access to R_G (within 5%) at $x = 10^{-4} - 10^{-3}$!

Introduction

Extracting gluon distributions

Results

• LHC


RHIC

Shadowing without p p data

Counting rates

Summary

Forward rapidity

- \blacksquare Fair matching ($\lesssim 10\%$) between $R_{_{p\mathrm{A}}}$ and $R_{_{G}}$
- Needs to be corrected for (trivial) isospin effects though

Introduction

Extracting gluon distributions

Results

- LHC
- RHIC
- Shadowing without p p data
- Counting rates

Summary

Problem: no p p collision at $\sqrt{s} = 8.8 \text{ TeV}$

How to measure $R_{\scriptscriptstyle G}(x)$ without any p p reference data ?

Introduction

Extracting gluon distributions

Results

- LHC
- RHIC
- Shadowing without p p data
- Counting rates

Summary

Problem: no p p collision at $\sqrt{s} = 8.8$ TeV

How to measure $R_{_{G}}(x)$ without any p p reference data ?

Compare forward w/ backward production in p A collisions

$$\frac{\mathrm{d}\sigma(p\;\mathrm{A}\to\;\gamma(\textcolor{red}{+}\textcolor{red}{y})\;\mathrm{X}\;)}{\mathrm{d}\sigma(p\;\mathrm{A}\to\;\gamma(\textcolor{red}{-}\textcolor{red}{y})\;\mathrm{X}\;)} \;\;=\;\; R_{_{p\mathrm{A}}}(x_{_{\perp}},+y)\big/R_{_{p\mathrm{A}}}(x_{_{\perp}},-y)$$

$$\simeq\;\; R_{_{G}}(x_{_{\perp}}e^{-y})\big/R_{_{F_{2}}}(x_{_{\perp}}e^{y})$$

Introduction

Extracting gluon distributions

Results

- LHC
- RHIC
- Shadowing without p p data
- Counting rates

Summary

Problem: no p p collision at $\sqrt{s} = 8.8$ TeV

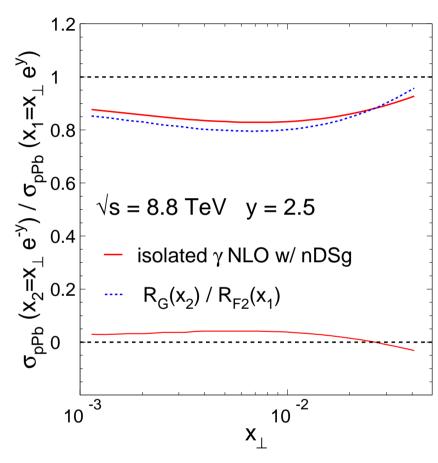
How to measure $R_{_{G}}(x)$ without any p p reference data ?

Compare forward w/ backward production in p A collisions

$$\frac{\mathrm{d}\sigma(p \,\mathrm{A} \to \gamma(+y) \,\mathrm{X})}{\mathrm{d}\sigma(p \,\mathrm{A} \to \gamma(-y) \,\mathrm{X})} = R_{p\mathrm{A}}(x_{\perp}, +y) / R_{p\mathrm{A}}(x_{\perp}, -y)$$

$$\simeq R_{G}(x_{\perp}e^{-y}) / R_{F_{2}}(x_{\perp}e^{y})$$

 R_{F_2} at large x gives access to R_G at small x !



Extracting gluon distributions

Results

- LHC
- RHIC
- Shadowing without p p data
- Counting rates

Summary

- Encouraging yet a larger y would be better
- Need to correct for isospin effects

Counting rates

Introduction

Extracting gluon distributions

Results

- LHC
- RHIC
- Shadowing without p p data
- Counting rates

Summary

■ LHC $(\mathcal{L} = 1.4 \ 10^{30} \ \text{cm}^{-2} s^{-1}, \ \Delta t = 10^6 s)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}p_{\perp}}\Big|_{p_{\perp}=100~\mathrm{GeV}} \simeq 8~10^2~\mathrm{pb/GeV} \Rightarrow \mathcal{N} \sim 10^3/\mathrm{GeV}$$

■ RHIC $(\mathcal{L}_{int} = 0.45 \text{ pb}^{-1})$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}p_{\perp}}\Big|_{p_{\perp}=7~\mathrm{GeV}} \simeq 8~10^3~\mathrm{pb/GeV} \ \Rightarrow \ \mathcal{N} \sim 4~10^3/\mathrm{GeV}$$

[At RHIC-I,
$$\mathcal{L}_{\mathrm{int}} = 0.02 \mathrm{~pb}^{-1} \Rightarrow p_{\perp} \lesssim 5 \mathrm{~GeV}$$
]

Statistical accuracy in a year much better than the present spread of theoretical predictions for $R_{\scriptscriptstyle G}$ at small x

Summary

Introduction

Extracting gluon distributions

Results

Summary

- **Essential** to further constrain G(x) at small x
 - needed for pQCD predictions at LHC
 - looking for saturation
- Prompt photon production in p A collisions
 - an ideal observable to probe parton densities
- Phenomenology at RHIC and LHC
 - ullet reliable estimate of $R_{\scriptscriptstyle G}$ from $R_{\scriptscriptstyle pA}$ at forward rapidity
 - ullet extracting R_G witout pp data at the same energy