Theoretical Developments in Light and Heavy Flavour Energy Loss

'Science is the organized skepticism in the reliability of expert opinion.' - R. P. Feynman

Ivan Vitev, Nuclear Theory, T-16, LANL

Quark Matter 2008, February 4-10, Jaipur, India

Outline of the Talk

Theoretical developments in light and heavy quark energy loss

- Radiative and collisional energy loss of fast quarks and gluons toward a consistent picture
- Models of heavy flavor suppression from the perturbative to the non-perturbative and back
- Recent insights in the stopping power of cold nuclear matter

New theoretical and experimental opportunities for jet quenching physics at the LHC

- Jet finding algorithms and jet shapes in elementary N-N collisions
- Medium-induced jet shapes in QGP a theoretical approach
- Toward a 2D tomography of jets a differential test of parton interactions in the QGP

The Stopping Power of Matter

The Stopping Power of Matter

Toward Proper Comparison of $\Delta E^{rad} / \Delta E^{coll}$

Toward Proper Comparison of $\Delta E^{rad} / \Delta E^{coll}$

Toward Proper Comparison of $\Delta E^{rad} / \Delta E^{coll}$

Heavy Flavor: Perturbative Quenching or Not?

- Smaller contribution of the elastic compared to radiative energy loss, fluctuations
- One can recast the under-quenching of e^{\pm} into over-quenching of π^0 but not resolve both
- LO HTL may lead to 30% correction in the QGP density estimates

Wicks, S. et al. (2007) Wicks, S. et al. (2008)

Heavy Flavor: Perturbative Quenching or Not?

- Smaller contribution of the elastic compared to radiative energy loss, fluctuations
- One can recast the under-quenching of e^{\pm} into over-quenching of π^0 but not resolve both
- LO HTL may lead to 30% correction in the QGP density estimates

Wicks, S. et al. (2007)

Wicks, S. et al. (2008)

Charm baryon enhancement

 $N_{\Lambda_c} / N_D \sim 0.08$ in p+p, $N_{\Lambda_c} / N_D \sim 1$ in Au+Au

- Smaller branching fraction of Λ_{c} to electrons
- About 25% suppression effect for $C_{enhancement} = 12$

$$R_{AA}^{e} = \frac{1 + \left(N_{\Lambda_{c}} / N_{D}\right)_{pp}}{1 + C\left(N_{\Lambda_{c}} / N_{D}\right)_{pp}} \times \frac{1 + C\left(N_{\Lambda_{c} \to e} / N_{D \to e}\right)_{pp}}{1 + \left(N_{\Lambda_{c} \to e} / N_{D \to e}\right)_{pp}}$$

Martinez-Garcia, G. et al. (2007)

Heavy Meson Dissociation at RHIC and LHC

Heavy Meson Dissociation at RHIC and LHC

Coupling the Quark and Gluon Energy Loss

Jet quenching in SDIS - cold nuclei

- Can quarks and gluons become indistinguishable?
- Leading antiquark fragmentation is more suppressed than leading quark fragmentation

Zhang, B.W. et al. (2007)

Coupling the Quark and Gluon Energy Loss

1

0.8

Jet quenching in SDIS - cold nuclei

- Can quarks and gluons become indistinguishable?
- Leading antiquark fragmentation is more suppressed than leading 0.6 quark fragmentation

Zhang, B.W. et al. (2007)

QGP application of jet conversion

- Indirect indication that $\Delta E^g \neq 2.25 \Delta E^q$
- Non-asymptotic limits bring the q, g losses closer together
- Jet conversion may play a role but significant rate enhancement is needed

Liu, W. et al. (2007)

Theory of Cold Nuclear Matter Energy Loss

Theory of Cold Nuclear Matter Energy Loss

Scaling with $x_F(x_1)$, not x_{2} , indicates initial state energy loss

Advances in understanding the energy loss regimes

• Derivation of the Initial State energy loss

EST. 1943

$$\frac{\Delta E^{IS}}{E} = \left(\kappa_{LPM} \sim \frac{1}{5}\right) \frac{\Delta E^{BH}}{E} \propto \alpha_s \frac{L}{\lambda_g} \qquad \frac{\Delta E^{IS}_{quark}(Pb, Au)}{E} \approx 5\%$$

• Toward consistent phenomenology at forward rapidity / large X_F V., I. (2007)

Can be tested in DY at Fermilab's E906 and J-PARC

A Note on Phenomenology

Particle correlations, combining quenching and hydro models, looking at the medium response

Developments Theory and Phenomenology

Wicks, S.	Jet energy loss in rarer harder collisions				
Roy, P.	Quenching of light hadrons in the collisional energy loss scenario				
Bass, S. A.	Comparison of energy loss schemes in 3D hydro				
Cassaldery-Solana, J.	Energy dependence of the jet quenching parameter				
Barnafoldi, G.G.	Where does the energy loss lose strength				
B. Betz,	Mach cones in 3+1D ideal hydro				
B. Mueller	Mach cones in pQGP				
W. Horowitz	Falsifying AdS/CFT or pQCD				
R. Mizukawa	Jet quenching and the soft ridge				
	See also posters				

A Note on Phenomenology

Particle correlations, combining quenching and hydro models, looking at the medium response

Developments Theory and Phenomenology

Wicks, S.	Jet energy loss in rarer harder collisions			
Roy, P.	Quenching of light hadrons in the collisional energy loss scenario			
Bass, S. A.	Comparison of energy loss schemes in 3D hydro			
Cassaldery-Solana, J.	Energy dependence of the jet quenching parameter			
Barnafoldi, G.G.	Where does the energy loss lose strength			
B. Betz,	Mach cones in 3+1D ideal hydro			
B. Mueller	Mach cones in pQGP			
W. Horowitz	Falsifying AdS/CFT or pQCD			
R. Mizukawa	Jet quenching and the soft ridge			

See also posters

- From very complex systems simplicity can emerge again
- For hard probes: transition 1, 2, ...n particles \rightarrow jets

Jets: New Opportunities at the LHC

• Jets are collimated showers of energetic

particles that carry a large fraction of the energy available in the collisions

Jets: New Opportunities at the LHC

• Jets are collimated showers of energetic

 $R = \sqrt{(\eta - \eta_{jet})^{2} + (\phi - \phi_{jet})^{2}}$ R $\alpha_i = \{E_{Ti}, \eta_i, \phi_i\}$ $E_T = \sum_{i \in jet} E_{T, i}$ $\boldsymbol{\eta} = \sum_{i \in jet} \boldsymbol{\eta}_i \boldsymbol{E}_{T, i} / \boldsymbol{E}_T$ $\phi = \sum_{i \in iet} \phi_i E_{T, i} / E_T$ Sterman, G. et al. (1977)

particles that carry a large fraction of the energy available in the collisions

Jet algorithms:

- K_T algorithm: preferred, collinear and infrared safe to all orders in PQCD
- "Seedless" cone algorithm: practically infrared safe

Ellis, S.D. et al. (1993) Salam, G. et al. (2007)

Jets: New Opportunities at the LHC

• Jets are collimated showers of energetic

particles that carry a large fraction of the energy available in the collisions

Jet algorithms:

- K_T algorithm: preferred, collinear and infrared safe to all orders in PQCD
- "Seedless" cone algorithm: practically infrared safe

Ellis, S.D. et al. (1993) Salam, G. et al. (2007)

• Opportunity exists to discover and characterize jets in heavy ion collisions

In p+p - STAR Abelev, B. I. et al. (2006)

Energy Flow in Jets from PQCD: the Baseline

Energy Flow in Jets from PQGD: the Baseline

An intuitive approach to medium-induced jet shapes for non-experts

An intuitive approach to medium-induced jet shapes for non-experts

An intuitive approach to medium-induced jet shapes for non-experts

 $E_{jet} = 20 \text{ GeV}$

An intuitive approach to medium-induced jet shapes for non-experts

- Proven now to all orders in opacity
- Incompatible with Sudakov resummation (absence of large logs)
- Can be see in other approaches to the energy loss

Majumder, A. et al. (2005)

 $E_{jet} = 20 \text{ GeV}$

Destructive interference

A Differential Approach to Particle Correlations

A Differential Approach to Particle Correlations

Tomography of Jets

Tomography of Jets

Outlook

Outlook

- Shape functions in the medium and their generalization to two dimensional tomography of jets can ultimately reveal the mechanism of particle interactions in matter
- Jet topologies with large number of jets and their modifications will become accessible at the LHC

Conclusions

- First treatments of radiative and collisional energy loss of fast quarks and gluons in a consistent framework
- New models of heavy flavor suppression, both perturbative and non-perturbative; require experimental D, and B measurements
- Jet conversion processes in nuclear matter, understanding of SDIS, derivation of the initial state energy loss in large nuclei, valid forward rapidity phenomenology
- Developments of new jet finding algorithms for LHC experiments, seedless cone algorithm
- Determination of baseline jet shapes and jet topologies in p+p consistent with the Tevatron results
- Toward a 2D tomography of jets; understanding the medium induced jet shapes, energy corrections versus cone radius R, generalization of jet shape functions

Types of Energy Loss

Jet Cross Sections: Comparison to LO and NLO PQCD

• Good comparison to the shape at LO. Meaningful K-factor

• Even better comparison at NLO.

Jet Shapes in QCD: the p-p Baseline

An analytic approach to the energy distribution of jet

Seymour, M. (1998)

QCD splitting kernel

 $dP_{a} = \frac{\alpha_{s}}{2\pi} \frac{d\rho^{2}}{\rho^{2}} \frac{d\phi}{2\pi} dz P_{a \to bc}(z)$

 Note: the Kinoshita, Lee, Nuenberg theorem does not guarantee collinear safety

Kinoshita, T (1962) Lee, T. D. et al. (1962)

Requires Sudakov resummation

$$P_{Sudakov}(\langle r, \mathbf{R} \rangle) = \exp(-P_1(\langle r, \mathbf{R} \rangle))$$

• The collinear divergence is essential

$$\begin{array}{rcl} & \begin{array}{c} q & & \\$$

Jet Physics at the LHC

Searches SUSY

- Based on tried and true symmetry principles
- Unification of the coupling constants
- Excellent candidate for cold dark matter (neutralino 30 GeV 10 TeV)

$$W = \sum_{L,E^c} \lambda_L LE^c H_1 + \sum_{Q,U^c} \lambda_Q QU^c H_2 + \sum_{Q,D^c} \lambda_Q QD^c H_1 + \mu H_1 H_2$$

Wess, J. et al. (1974) Georgi, H. et al. (1981)

supersymmetry fermions bosons PARTICLES THAT PARTICLES THAT MAKE UP MATTER MEDIATE FORCES ELECTRON PHOTON GLUON HIGGS KNOWN THEORETICAL PLANE DIVIDING "SPARTICLE" "SELECTRON "SQUARK"

Photino, Zino and Neutral Higgsino: Neutralinos

Charged Wino, charged Higgsino: Charginos

Searches for higher dimensions

- Generalization to 5D E&M+Gravity
- Numerous extensions

$$ds^{2} = (e^{-2ky})\eta_{\mu\eta}x^{\mu}x^{\nu} - dy^{2} \quad m_{n} = n / R \ (S^{1})$$

Kaluza, T. (1921) Klein, O. (1926) Overdui, J. M. et al. (1999)

Searching for Extra Diemnsions and SUSY

Observation at colliders LHC

Events / 20 GeV Excess Missing Energy at LHC $\delta = 4$ $M_p = 5 \text{ TeV}$ 10 6 LHC : VE = 14 TeV 10 5 [] jW(ev), jW(μν) 10 4 ______ JW(TV) jZ(vv) 10 3 Signal 10 2 10 1 200 1200 1400 1600 1800 2000 E_miss (GeV)

Figure 1: Missing energy spectrum at the LHC.

Field Content of the MSSM								
Super-	Boson	Fermionic						
Multiplets	Fields	Partners	SU(3)	SU(2)	U(1)			
gluon/gluino	g	\widetilde{g}	8	0	0			
gauge/	W^{\pm}, W^{0}	$\widetilde{W}^{\pm}, \widetilde{W}^{0}$	1	3	0			
gaugino	В	\widetilde{B}	1	1	0			
slepton/	$(\widetilde{\nu}, \widetilde{e}^-)_L$	$(\nu, e^-)_L$	1	2	-1			
lepton	\tilde{e}_R^-	e_R^-	1	1	-2			
squark/	$(\widetilde{u}_L, \widetilde{d}_L)$	$(u, d)_L$	3	2	1/3			
quark	\widetilde{u}_R	u_R	3	1	4/3			
	\widetilde{d}_R	d_R	3	1	-2/3			
Higgs/	(H_d^0,H_d^-)	$(\widetilde{H}^0_d, \widetilde{H}^d)$	1	2	-1			
higgsino	(H_{u}^{+}, H_{u}^{0})	$(\widetilde{H}_{u}^{+},\widetilde{H}_{u}^{0})$	1	2	1			

124 parameters (18 are the SM)

MSSM

Mass Spectrum in Minimal Super Gravity

Example of 100 GeV SUSY particles

Medium-Induced Radiation in the Final State

Ivan Vitev

Medium-Induced Radiation in the Initial State

• Bertsch-Gunion case with interference

Vitev, I. (2007)

$$k^{+} \frac{dN_{g}}{dk^{+}d^{2}k_{\perp}} = \sum_{n=1}^{\infty} k^{+} \frac{dN_{g}^{n}}{dk^{+}d^{2}k_{\perp}} = \sum_{n=1}^{\infty} \frac{C_{R}\alpha_{s}}{\pi^{2}} \left[\prod_{i=1}^{n} \int_{0}^{L-\sum_{j=i+1}^{n}\Delta z_{j}} \frac{d\Delta z_{i}}{\lambda_{g}(z_{i})} \int d^{2}q_{i} \left(\frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^{2}q_{i}} - \delta^{2}(q_{i}) \right) \right] \\ \times \left[B_{(2...n)(1...n)} \cdot B_{(2...n)(1...n)} + 2B_{(2...n)(1...n)} \cdot \sum_{m=2}^{n} B_{(m+1...n)(m...n)} \left(\cos\left(\sum_{k=2}^{m} \omega_{(k...n)} \Delta z_{k} \right) \right) \right]$$

• Realistic initial state medium induced radiation $k^{+} \frac{dN_{g}}{dk^{+}d^{2}k_{\perp}} = \sum_{n=1}^{\infty} k^{+} \frac{dN_{g}^{n}}{dk^{+}d^{2}k_{\perp}} = \sum_{n=1}^{\infty} \frac{C_{R}\alpha_{s}}{\pi^{2}} \left[\prod_{i=1}^{n} \int_{0}^{L-\sum_{j=i+1}^{n}\Delta z_{j}} \frac{d\Delta z_{i}}{\lambda_{g}(z_{i})} \int d^{2}q_{i} \left(\frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^{2}q_{i}} - \delta^{2}(q_{i}) \right) \right] \\
\times \left[B_{(2...n)(1...n)} \cdot B_{(2...n)(1...n)} + 2B_{(2...n)(1...n)} \cdot \sum_{m=2}^{n} B_{(m+1...n)(m...n)} \left(\cos \left(\sum_{k=2}^{m} \omega_{(k...n)} \Delta z_{k} \right) \right) \right] \\
= 2H \cdot B_{(2...n)(1...n)} \left(\cos \left(\sum_{k=2}^{n+1} \omega_{(k...n)} \Delta z_{k} \right) \right) \right]$

Cold Nuclear Matter Effects for π^0 and Direct γ

• Where it starts from

- Dynamical shadowing (coherent final state scattering)
- Cronin effect (initial state transverse momentum diffusion)
- Initial state energy loss (final state at these energies negligible)

Cold Nuclear Matter Effects

• Initial-state E-loss

Energy scale

$$E = p_T \cosh(y_{jet} - y_{target})$$

• Effect of cold nuclear matter energy loss is equal to the doubling of the parton rapidity density

A Note on PQCD Regimes

- An interesting idea \neq valid physics explanation
- We don't know the degree of coherence at the LHC. One has to understand PQCD and its E-loss regimes before embarking on the ambitious task of disproving PQCD itself

Light Cone Wave Functions

From general theory of LCWF for the lowest-lying Fock state

S.Brodsky, D.S.Hwang, B.Q.Ma, I.Schmidt, Nucl.Phys.B 592 (2001)

• Expansion in Fock components

$$\left| \boldsymbol{\psi}_{M}; \boldsymbol{P}_{\perp}, \boldsymbol{P}^{+} \right\rangle = \sum_{i=2}^{n} \int \frac{dx_{i}}{\sqrt{2x_{i}}} \frac{d^{2}k_{\perp i}}{\sqrt{(2\pi)^{3}}} \boldsymbol{\psi}_{i}(\boldsymbol{k}_{\perp i}, x_{i})$$
$$\times \delta\left(\sum_{i=2}^{n} x_{i} - 1\right) \delta\left(\sum_{i=2}^{n} k_{\perp i}\right) \left| i; k_{\perp i} + x_{i} \boldsymbol{P}_{\perp}, x_{i} \boldsymbol{P}^{+} \right\rangle$$

LO Fock component

$$\left| \psi \left(\Delta k_{\perp}, x \right) \right|^{2} \sim Exp \left[-\frac{\Delta k_{\perp}^{2} + 4m_{Q}^{2}(1-x) + 4m_{q}^{2}(x)}{4\Lambda^{2}x(1-x)} \right]$$

Results for heavy flavor

• Models such as coalescence should use plausible wave functions, especially for heavy flavor

Medium-Modified Heavy Meson

