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Quark Matter 2008, Jaipur, India Motivation

Motivation
contesting the hydrodynamical picture of heavy-ion collisions at RHIC

hydrodynamic evolution requires very early thermalization of the system, since the

asymmetry of the transverse flow is produced most effectively at the very early

stage of the evolution, to obtain v2 consistent with data it is necessary to start the

hydrodynamic evolution at the time below 1 fm after the collision takes place

the system lives for a rather long time before freeze-out and the ratio Rout/Rside

disagrees with HBT measurements, HBT puzzle

in this talk the possibility is explored that, at its early stages, the hydrodynamic
evolution applies only to transverse degrees of freedom of the partonic system
created in high-energy collisions,

the idea pioneered by Heinz and Wong, PRC 66 (2002) 014907
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1. Ansatz for the phase-space distribution function 1.1. Longitudinal vs. transverse dynamics

1.1. Longitudinal vs. transverse dynamics

‖

the early equilibration, if at all possible, is

particularly difficult to achieve in

longitudinal direction elastic collisions do

not change significantly the direction of the

colliding partons and thus it requires very

many interactions to produce a locally

isotropic distribution from the initially strongly

anisotropic one

St. Mróczyński

⊥

transverse momentum spectra observed in

nucleon-nucleon collisions are well

described by the Boltzmann distribution the

partonic system produced in hadronic

collisions emerges already in a state close

enough to equilibrium in the transverse

direction

Hagedorn, ... , Heinz+Becattini, Bialas,

Kharzeev, Florkowski, ...
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1. Ansatz for the phase-space distribution function 1.2. Factorization of the distribution function

1.2. Factorization of the distribution function

our main assumption: the 3D

phase-space distribution function

f (x , p) is factorized into the

longitudinal and transverse part

f (x , p) = f‖ geq

f‖ - non-equilibrium longitudinal part,

describes essentially free-streaming

geq - equilibrium transverse part,

describes 2D hydrodynamic

expansion

useful visualization in terms of discrete

independent transverse layers

(clusters) y

x z

geqfÈÈ
- vÈÈ + vÈÈ

with standard definitions of rapidity y
and spacetime rapidity η

E = m⊥ cosh y, p‖ = m⊥ sinh y

t = τ cosh η, z = τ sinh η

τ =
p

t2 − z2, m⊥ =
q

m2 + p2
⊥
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1. Ansatz for the phase-space distribution function 1.3. Longitudinal part

1.3. Longitudinal part
partons originate at the spacetime point t , z = 0 and reach the point z after time t ,

v‖ = z
t =

p‖
E , to satisfy this condition and have the correct dimension we define the

longitudinal part as

f‖ = n0 δ(p‖ t − E z) = n0
δ(y − η)

τ m⊥

clearly, this assumption makes sense at the early stages of the evolution

note: at midrapidity we have

dzdp‖ = m⊥τ dydη

in our case, the dimensionless parameter n0

determines the initial parton density in

rapidity

n0 small
r

z

- vÈÈ + vÈÈ

n0 large
r

z

- vÈÈ + vÈÈ
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1. Ansatz for the phase-space distribution function 1.4. Transverse part

1.4. Transverse part
geq has the form of the two-dimensional equilibrium distribution function convoluted with

the transverse flow, for simplicity we use the Boltzmann statistics and neglect the

chemical potential

geq = exp

(
−m⊥ u0 −

−→p⊥ ·
−→u ⊥

T

)
the transverse flow uµ has the structure

uµ = (u0, ux , uy , 0) =
(

u0,
−→u ⊥, 0

)
u2

0 −
−→u 2
⊥ = 1

geq depends on the spacetime coordinates τ, η,
−→x ⊥ via temperature T and transverse

flow uµ
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2. Moments of the distribution function 2.1. Particle current and energy-momentum tensor

2.1. Particle current and energy-momentum
tensor
we define the particle current and energy-momentum tensor in the standard way, as the
first and second moment of the distribution function

Nµ = n0νg

Z
dy d2p⊥

(2π)2
pµ δ(y − η)

τm⊥
geq =

n0νgT 2

2πτ
Uµ

Tµν = n0νg

Z
dy d2p⊥

(2π)2
pµpν δ(y − η)

τm⊥
geq =

n0νgT 3

2πτ
(3UµUν − gµν − VµVν)

for the p⊥ integration the appropriate 2D density of states is introduced νg/(2π)2, for
gluon dominated systems νg = 16

Uµ = (cosh η u0, ux , uy , sinh η u0)

Vµ = (sinh η, 0, 0, cosh η)

the presence of the four-vector Vµ in the energy-momentum tensor is related with

special role of the longitudinal direction
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2. Moments of the distribution function 2.2. Entropy current

2.2. Entropy current
entropy current (based on the Boltzmann nonequilibrium definition)

Sµ = −n0νg

Z
dy d2p⊥

(2π)2
pµ δ(y − η)

τm⊥
geq (ln geq − 1) =

3n0νgT 2

2πτ
Uµ

explicit calculation shows Uν∂µTµν = T∂µSµ – the energy-momentum conservation
implies the entropy conservation, as in the standard 3D hydrodynamics

global conservation laws for entropy

∞Z
0

dr r

2πZ
0

dφ T 2(τ, r , φ)u0(τ, r , φ) = const

for 3D boost-invariant case one finds

∞Z
0

dr r

2πZ
0

dφ T 3(τ, r , φ)u0(τ, r , φ) =
const

τ

for 2D hydro the initial thermal energy may decrease only at the expense of increasing

transverse flow, for 3D boost-invariant hydro, even without the transverse expansion the

temperature drops, as is well known from the famous Bjorken model
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2. Moments of the distribution function 2.3. Relation to 2D thermodynamic quantities

2.3. Relation to 2D thermodynamic quantities
in the local rest frame, the densities of our 3D system are simply related to 2D
thermodynamic variables:

N0 =
n0

τ
n2(T ), T 00 =

n0

τ
ε2(T ), S0 =

n0

τ
s2(T )

the appropriate two-dimensional densities are defined by the equations following from
the two-dimensional potential Ω2, they satisfy all required thermodynamic identities

n2 = νg

Z
d2p

(2π)2
geq =

νgT 2

2π

ε2 = νg

Z
d2p

(2π)2
p⊥geq =

νgT 3

π

s2 = −νg

Z
d2p

(2π)2
geq ( ln geq − 1) =

3νgT 2

2π

thermodynamic relation ε2 + P2 = Ts2 gives pressure and sound velocity

P2 = ν
T 3

2π
= n2T =

ε2

2
, c2

s =
1
2
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3. Transverse hydrodynamics 3.1. Derivation of hydrodynamic equations

3.1. Derivation of hydrodynamic equations
the hydrodynamic equations are obtained from the energy and momentum
conservation laws

∂µTµν = 0, Tµν =
n0νgT 3

2πτ
(3UµUν − gµν − VµVν)

the energy-momentum conservation laws are consistent with the entropy conservation
law

Uν∂µTµν = T∂µSµ = 0, Sµ =
3n0νgT 2

2πτ
Uµ

in the derivation of hydro
equations the following 3
combinations are used

∂µSµ = 0

U1∂µTµ1 + U2∂µTµ2 = 0

U2∂µTµ1 − U1∂µTµ2 = 0

as the result we obtain
hydrodynamic equations for
2D perfect fluid

s(T )

vx

vy

r

Φ

vR

vT

v

Α

x

y
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3. Transverse hydrodynamics 3.2. Boost non-invariance

3.2. Boost non-invariance

Lemma (one of many beatiful features of this approach)

If Tµν is conserved, then Tµν multiplied by any function of η is also conserved

∂µTµν = 0 ⇒ ∂µ [f (η)Tµν ] = 0

in particular n0 may be a rapidity dependent function

→ hydro equations ∂µTµν = 0 do not specify the η-dependence, the hydrodynamic

evolution is determined separately for each transverse layer, the η-dependence is

determined by the initial conditions

y

x
rapidity

2D hydrodynamics
n0

- vÈÈ + vÈÈ
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4. Initial conditions and Cooper-Frye formula 4.1. Initial conditions

4.1. Initial conditions

similarly to other hydrodynamic calculations we assume that the initial energy density at
the transverse position point −→x ⊥ is proportional to the wounded-nucleon density ρWN at
this point, namely

ε2

“−→x ⊥”
=

n0νgT 3
“−→x ⊥”

π
∝ ρWN

“−→x ⊥”
.

this assumption used for a 2D system is equivalent to the assumption s3 ∝ ρWN used in 3D
hydrodynamic codes,

T (τinit,
−→x ⊥) = Ti

24 ρWN

“−→x ⊥”
ρWN (0)

351/3

where the parameter Ti is the initial central temperature
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4. Initial conditions and Cooper-Frye formula 4.2. Cooper-Frye prescription

4.2. Cooper-Frye prescription

transverse-momentum spectra are obtained with the standard Cooper-Frye prescription

dN
dyd2p⊥

=
n0νg

(2π)2

Z
dΣµpµ

δ(η − y)

τm⊥
geq

for cylindrically asymmetric collisions and midrapidity, y = 0, the transverse-momentum
spectrum has the following expansion in the azimuthal angle of the emitted particles

dN
dyd2p⊥

=
dN

dy 2πp⊥ dp⊥
(1 + 2v2(p⊥) cos(2φp) + ...)

this equation defines the elliptic flow coefficient v2, which may be calculated from the
asymmetry of the momentum spectrum

v2(p⊥) =
1
2

fN(p⊥, φp = 0)− fN(p⊥, φp = π
2 )

fN(p⊥, φp = 0) + fN(p⊥, φp = π
2 )

with fN being a shorthand notation for dN/(dyd2p⊥)

Mikołaj Chojnacki (IFJ PAN) Early evolution of partons February 5, 2008 15 / 20



4. Initial conditions and Cooper-Frye formula 4.2. Cooper-Frye prescription

4.2. Cooper-Frye prescription

transverse-momentum spectra are obtained with the standard Cooper-Frye prescription

dN
dyd2p⊥

=
n0νg

(2π)2

Z
dΣµpµ

δ(η − y)

τm⊥
geq

for cylindrically asymmetric collisions and midrapidity, y = 0, the transverse-momentum
spectrum has the following expansion in the azimuthal angle of the emitted particles

dN
dyd2p⊥

=
dN

dy 2πp⊥ dp⊥
(1 + 2v2(p⊥) cos(2φp) + ...)

this equation defines the elliptic flow coefficient v2,

which may be calculated from the
asymmetry of the momentum spectrum

v2(p⊥) =
1
2

fN(p⊥, φp = 0)− fN(p⊥, φp = π
2 )

fN(p⊥, φp = 0) + fN(p⊥, φp = π
2 )

with fN being a shorthand notation for dN/(dyd2p⊥)
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5. Results 5.3. Freeze-out with THERMINATOR

5.3. Freeze-out with THERMINATOR

[A. Kisiel et al., Comput. Phys. Commun. 174 (2006) 669, modified version]

the two-dimensional gluon system is replaced by the two-dimensional hadron gas,

hadronic resonances decay
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5. Results 5.4. HBT two-particle method

HBT two-particle method
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6. Conclusions

6. Conclusions

1. the idea that the parton system created in relativistic heavy-ion collisions emerges
in a state with transverse momenta close to thermodynamic equilibrium and its
evolution at early times is dominated by the 2-dimensional (transverse)
hydrodynamics is investigated and shown to be consistent with data (spectra and
v2)

2. this mechanism does not require early 3D equilibration, strong v2 is produced in
non-completely thermalized matter

3. this mechanism may also help to solve the HBT puzzle, but this needs extra work
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