Jet-Energy Loss in Heavy-Ion Collisions Where Does the Energy Loss Lose Strength?

Gergely Gábor Barnaföldi – CNR, Kent State University

in collaboration with: George Fai – CNR, Kent State University; Péter Lévai – MTA KFKI RMKI, Budapest; Brian A. Cole – Columbia University; Gábor Papp – Eötvös University, Budapest.

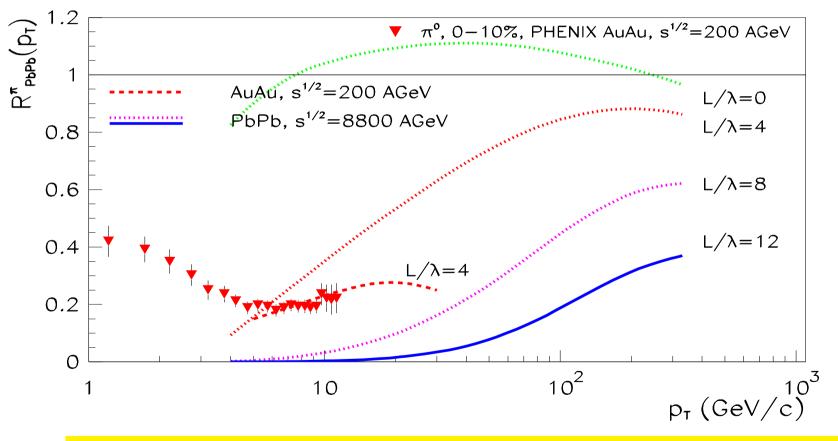
> Quark Matter 2008 4-10 February 2008 – Jaipur, India 5^{th} February 2008

Ο U Τ L Ι Ν Ε

-I. Results

0. Motivation – paradox behaviors in R_{AB}

- $-R_{AuAu}^{\pi}$ seems to increase at high- p_T ...
- -...but, R_{dA}^{h} and R_{AuAu}^{γ} decrease at high- p_T ?
- Signatures for EMC effect in dAu and AuAu at RHIC


I. The strength of HOT quenching at high- p_T at RHIC

- What are the good parameters: L, λ , μ , \hat{q} ,... ?
- Conservative test: GLV energy loss at high- p_T

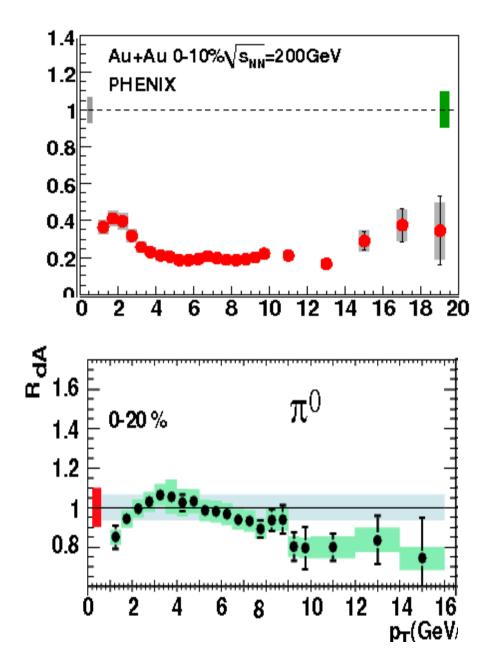
II. Nuclear Modifications at LHC – results again...

- Analysing EMC effect in high-energy AA' collisions
- Predictions for LHC at 5.5 TeV PbPb collisions

Results: What do we expect for the energy loss

in *PbPb* collisions in LHC experiments?

$\mathbf{M} \mathbf{O} \mathbf{T} \mathbf{I} \mathbf{V} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{O} \mathbf{N} - \pi^0$

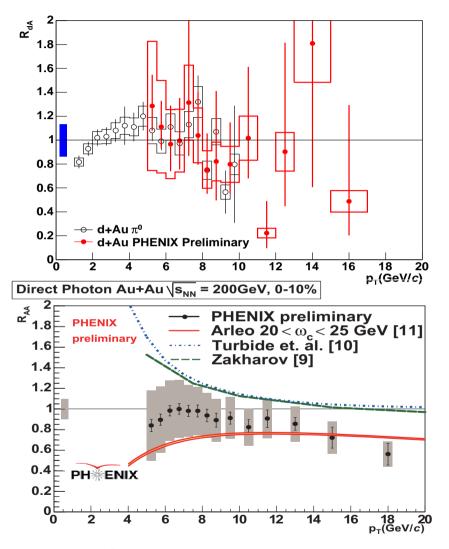

HOT PHENIX π^0 data

- $\operatorname{arXiv:0801.4020v1} (2008)$
- $-R_{AuAu} \approx 0.2$ at low p_T s
- At high $p_T \sim 15 20 \text{ GeV/c}$

 $R_{AuAu} \approx 0.4$, where this will go?

More precise PHENIX dAu data

- PRL 98 (2007) 172302
- Only huge errors at high p_T ?
- -20 25% suppression and slope structure at high p_T ?

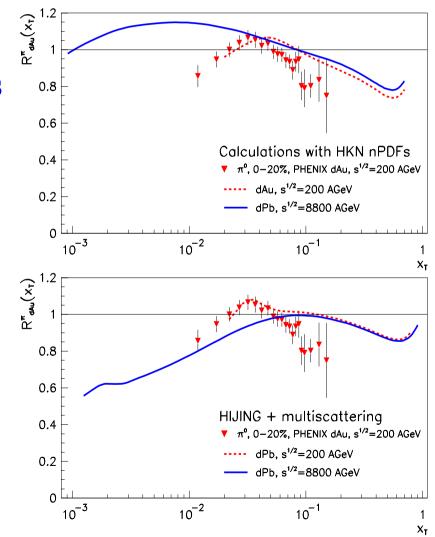

$\mathbf{M} \mathbf{O} \mathbf{T} \mathbf{I} \mathbf{V} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{O} \mathbf{N} - \gamma$

PHENIX prelim. γ data in dAu

- D. Peressounko, hep-ex/0609037
- Weak but, $R_{dAu}^{\gamma} \lesssim 1$, so negative slope at high p_T .

PHENIX prelim. γ data in AuAu

- T. Isobe, nucl-ex/0701040
- This is a 20 40% effect with negative slope again.


Paradoxon: why do differ the slopes in π^0 and γ production?

THEORETICAL INPUT

Baseline: dAu analysis for π^0 and γ (see poster #31)

- Shadowing function has x scaling by its nature, but parameterizations differ even $\sim 40\%$ at low-x.
- Common properties at high xall has constant negative log slope.
- Multiple scattering also scales: based on E706 measurement in FNAL we found, this is $\sim \ln(\sqrt{s})$

It's time to see the energy loss...

- ...

Models for jet energy loss in heavy-ion collisions

The 'conservative' non-Abelian jet energy loss methods

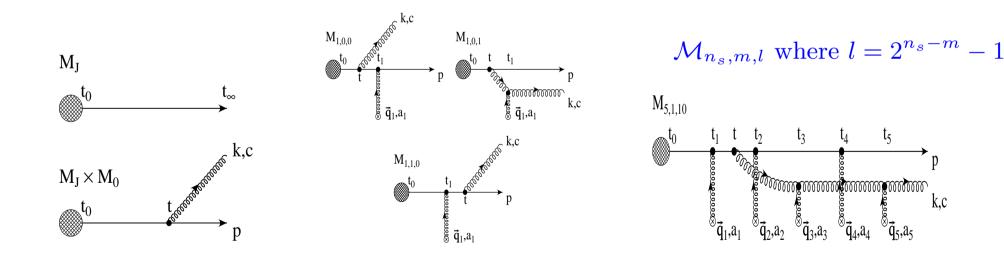
- Energy loss in THICK plasma BDMS, LCPI
- Energy loss in THIN plasma GLV

New models on jet energy loss

- PQM model Loizides, Daniese, Paić
- AdS CFT for heavy quarks, see the talk of W. Horowitz

Here, I will use the 'conservative' way with L/λ

Į5

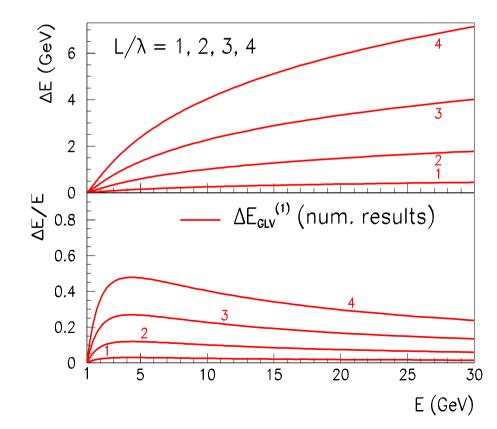

k.c

Medium induced radiative energy loss – for $L \sim \lambda_q$

Gyulassy-Lévai-Vitev, Phys. Rev. Lett. 85, 5535; Nucl. Phy s. B594, 371

GLV: time-ordered pQCD (Feynman diagramms)

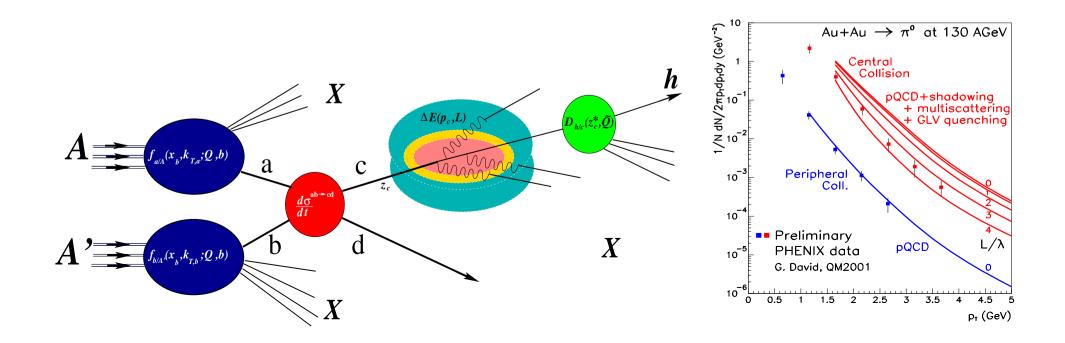
- OPACITY expansion (n = 1, 2, 3, ...)+
- kinematical cuts +


Simplification of this equation:

Relative Energy Loss vs. Jet Energy

Energy dependence of GLV jet energy loss

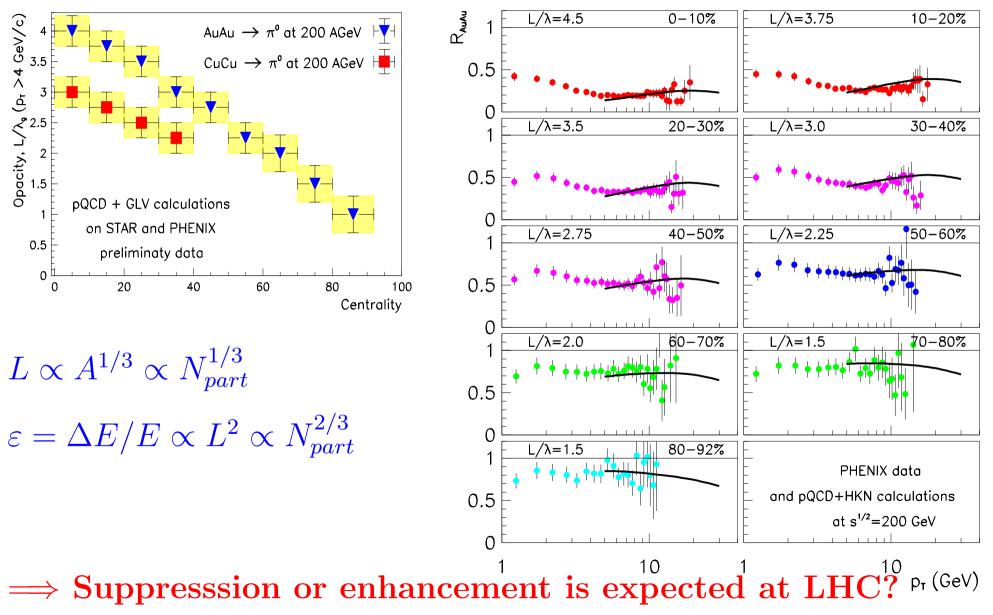
$$\implies \Delta E_{GLV} \approx \Delta E_{GLV}^{(1)} \approx \frac{C_R \alpha_s}{N(E)} \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu}$$


- ΔE is *E*-dependent N(E) is a numerical function, $N(E) \longrightarrow 4$ at $E \longrightarrow \infty$.
- \approx **E-independent** $\Delta E/E$ in 3 < GeV E < 10 GeV
- **Opacity** $n = L/\lambda$
- logarithmic tail

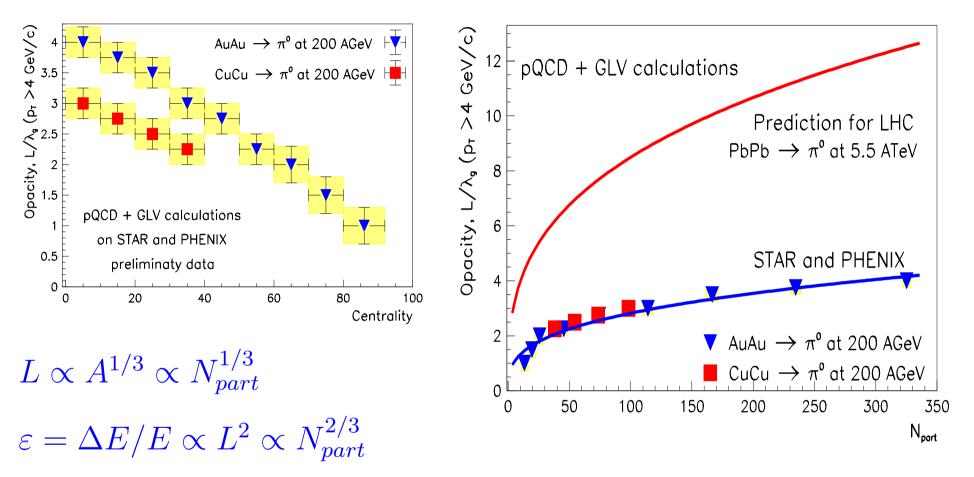
GLV jet-quenching in thin plasma approximation $L \sim \lambda_g$

$$\Delta E_{GLV} \approx \frac{C_R \alpha_s}{N(E)} \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu} = \frac{C_R \alpha_s}{N(E)} \frac{1}{A_\perp} \frac{dN}{dy} \langle L \rangle \log \frac{E}{\langle \mu \rangle}$$

Energy loss of jet decreases the p_c momenta of c before fragmentation: $\frac{D_{\pi/c}(z_c,Q'^2)}{\pi z_c^2} \rightarrow \frac{z_c^*}{z_c} \frac{D_{\pi/c}(z_c^*,Q'^2)}{\pi z_c^2}, \text{ where } z_c^* = \frac{z_c}{1-\Delta E/p_c},$



Jet-tomography at midrapidity in AuAu and CuCu



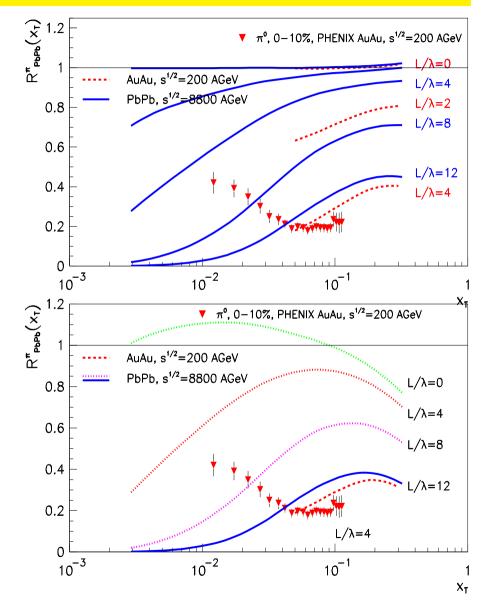
All of these information are summarized \Longrightarrow

Analyzing opacity dependence in midrapidity AA' collisions

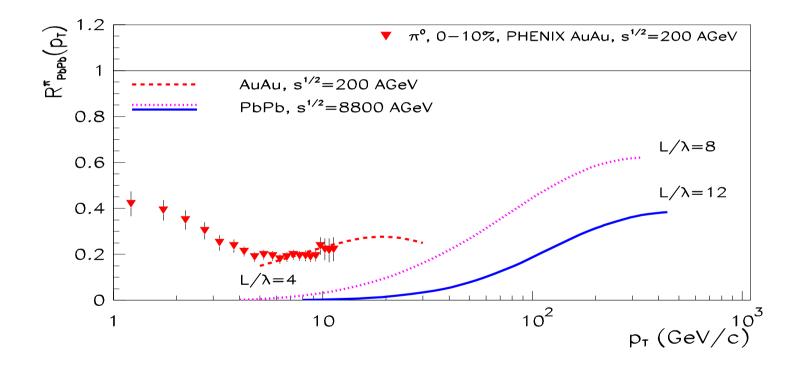
Opacity Prediction for *PbPb* **collisions at LHC**

- $\implies L/\lambda$ will NOT disappear in very peripheral collisions;
- $\implies N_{part}$ suggests strong suppression for LHC with $L/\lambda \approx 8 12$;
- \implies ... but energy loss looses its strength at high p_T

How the energy loss will look like at high energies?


Without shadowing

- General rule: $\frac{dN}{dy} \sim \ln \sqrt{s}$
- Central AuAu at RHIC


$$\frac{1}{A_{\perp}} \frac{dN}{dy} \approx \frac{680}{\pi R_{AuAu}^2} = 5.1$$
$$- \text{LHC:} \ \frac{dN}{dy} \sim 1500 - 2000$$
$$\frac{1}{A_{\perp}} \frac{dN}{dy} \approx 10 - 15$$

With all nuclear effects

- Shadowing (EMC) effect will will suppress again at high-x

R_{PbPd} might enhance at $p_T \sim 15$ at RHIC

but, makes a maximum even at LHC energies.

SUMMARY

Latests PHENIX R_{AB} data have paradox behavior

 $-R_{AuAu}^{\pi}$ seems to increase at high- p_T ...

- -...but, R_{dA}^{h} and R_{AuAu}^{γ} decrease at high- p_T ?
- possible signature of the EMC effect in dAu and AuAu

I. The strength of HOT quenching at high- p_T

- Conservative test: GLV energy loss at high- p_T
- We expect a maximum of $R_{AuAu}^{\pi}(p_T)$ at $p_T \approx 15 \text{ GeV/c}$

II. Nuclear Modifications at LHC energies – result again...

- Opacity estimated $L/\lambda \approx 8 12$ in PbPb at LHC
- Using this $R^{\pi}_{AuAu}(p_T)$ were shown for LHC at 5.5 TeV PbPb

Identified high- p_T particle measurements in ALICE – HMPID and VHMPID detectors in ALICE posters: 97 & 98