Quark Matter '08, Jaipur, India

# What can we learn about confinement and and

chiral symmetry breaking from heavy ion collisions?

D. Kharzeev



Even a fully successful and quantitative model of heavy ion collisions will be of limited value to the broad scientific community if it does not bring us closer to answering the <u>fundamental physics questions</u>, such as:

What is the mechanism of confinement?

What is the origin of chiral symmetry breaking?

What is the origin of mass?

• • • •

Two concrete examples will be considered here; both highlight the role of quantum anomalies in QCD matter

### The scale anomaly of QCD

$$\mathcal{L} = -\frac{1}{4}G^{a}_{\mu\nu}G^{a}_{\mu\nu} + \sum_{f} \bar{q}^{a}_{f}(i\gamma_{\mu}D_{\mu} - m_{f})q^{a}_{f};$$

Classical scale invariance is broken by quantum effects:

scale anomaly

$$\theta^{\mu}_{\mu} = \frac{\beta(g)}{2g} G^{\alpha\beta a} G^{a}_{\alpha\beta} + \sum_{q} m_{q} \bar{q}q$$

trace of the energymomentum tensor

"beta-function"; describes the dependence of coupling on momentum

Hadrons get masses Quarks get confined coupling runs with the distance

### Scale anomaly in QCD matter



The lattice data from G.Boyd, J.Engels, F.Karsch, E.Laermann, C.Legeland, M.Lutgeimer, B.Petersson, hep-lat/9602007





Model studies: Mizutani, Muroya, Namiki, '88; Paech, Pratt '06; Chen, Wang '07

### Bulk viscosity in full QCD

#### Qualitatively similar results:

F.Karsch, DK, K.Tuchin, arXiv:0711.0914



+ Near the chiral critical point: divergence of bulk viscosity

Talks by V. Koch, M. Stephanov,....

## THE ORIGIN OF CONFINEMENT **HADRON MASSES SCALE ANOMALY** BULK **VISCOSITY**











DK'04 DK, A. Zhitnitsky'07 DK, L. McLerran and H. Warringa '07

Talks by H. Warringa, S. Voloshin + STAR poster 205

### Charge asymmetry w. r.t. reaction plane violates T, P, and (by CPT theorem) CP:



#### **Analogy to P violation in weak interactions**



### Charge asymmetry w.r.t. reaction plane: how to detect it?



S. Voloshin, hep-ph/0406311

We need a sensitive measure of the asymmetry

The method: "mixed harmonics"

**X** (defines  $\Psi_{R}$ )

$$a^k a^m = \langle \sum_{ij} \sin(\varphi_i^k - \Psi_R) \sin(\varphi_j^m - \Psi_R) \rangle$$

Expect 
$$a^+a^+ = a^-a^- > 0; a^+a^- < 0$$

### Strong P, CP violation at high T?



Need to analyze the systematics and backgrounds - vigorous ongoing work!

S. Voloshin [STAR Coll.] Poster 205, QM'08

### P and CP violation as a signature of deconfinement and chiral symmetry breaking

P and CP violation (charge separation via the "chiral magnetic effect") requires:

- <u>deconfinement</u> need to separate (anti-) quarks with opposite electric charges spatially
- <u>restored chiral symmetry</u> charge separation is only possible if chirality is conserved

#### If observed conclusively:

- would prove the creation of <u>deconfined and chirally symmetric phase</u>
- would establish experimentally the presence of topological configurations of gluon fields and their role in  $\chi SB$