What can we learn about confinement and chiral symmetry breaking from heavy ion collisions?

D. Kharzeev
Even a fully successful and quantitative model of heavy ion collisions will be of limited value to the broad scientific community if it does not bring us closer to answering the fundamental physics questions, such as:

What is the mechanism of confinement?

What is the origin of chiral symmetry breaking?

What is the origin of mass?

...

Two concrete examples will be considered here; both highlight the role of quantum anomalies in QCD matter.
The scale anomaly of QCD

\[\mathcal{L} = -\frac{1}{4} G_{\mu\nu}^a G_{\mu\nu}^a + \sum_f \bar{q}_f^a (i\gamma_\mu D_\mu - m_f) q_f^a; \]

Classical scale invariance is broken by quantum effects:

\[\theta_\mu^\mu = \frac{\beta(g)}{2g} G^{\alpha\beta} G_{\alpha\beta} + \sum_q m_q \bar{q}q \]

-scale anomaly

trace of the energy-momentum tensor

"beta-function"; describes the dependence of coupling on momentum

Hadrons get masses
Quarks get confined

coupling runs with the distance
Scale anomaly in QCD matter

SU(3), pure gauge

Talks by J. Ellis, S. Gupta, F. Karsch, Z. Fodor, …
Confinement as seen by the off-equilibrium thermodynamics

Model studies: Mizutani, Muoya, Namiki, ‘88; Paech, Pratt ‘06; Chen, Wang ‘07
Bulk viscosity in full QCD

Qualitatively similar results:

F. Karsch, DK, K. Tuchin,
arXiv:0711.0914

+ Near the chiral critical point: divergence of bulk viscosity

Talks by V. Koch, M. Stephanov,
CONFINEMENT

THE ORIGIN OF HADRON MASSES

SCALE ANOMALY

BULK VISCOSITY
CHIRAL SYMMETRY BREAKING

TOPOLOGICAL STRUCTURE OF QCD VACUUM

AXIAL ANOMALY

P and CP VIOLATION
Talks by H. Warringa, S. Voloshin + STAR poster 205

\[N_{CS} = N_R - N_L \]

DK’04
DK, A. Zhitnitsky’07
DK, L. McLerran and H. Warringa ‘07
Charge asymmetry w. r.t. reaction plane violates T, P, and (by CPT theorem) CP:
Analogy to P violation in weak interactions
Charge asymmetry w.r.t. reaction plane: how to detect it?

S. Voloshin, hep-ph/0406311

We need a sensitive measure of the asymmetry

The method: “mixed harmonics”

\[a^k a^m = \langle \sum_{i,j} \sin(\varphi_i^k - \Psi_R) \sin(\varphi_j^m - \Psi_R) \rangle \]

Expect \(a^+ a^+ = a^- a^- > 0; \ a^+ a^- < 0 \)
Strong P, CP violation at high T?

Charge asymmetry w.r.t. reaction plane, $\sim -a^k a^m$

Need to analyze the systematics and backgrounds - vigorous ongoing work!

S. Voloshin [STAR Coll.] Poster 205, QM’08
P and CP violation as a signature of deconfinement and chiral symmetry breaking

P and CP violation (charge separation via the “chiral magnetic effect”) requires:

• **deconfinement** - need to separate (anti-) quarks with opposite electric charges spatially
• **restored chiral symmetry** - charge separation is only possible if chirality is conserved

If observed conclusively:

• would prove the creation of **deconfined and chirally symmetric phase**
• would establish experimentally the presence of **topological configurations of gluon fields and their role in χSB**