

Predictions for the LHC: an Overview

Néstor Armesto Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela

CERN Theory Institute, May-June 2007

Heavy Ion Collisions at the LHC - Last Call for Predictions organized by N.A., N. Borghini, S. Jeon and U.A. Wiedemann, arXiv:0711.0974 (93/170/82 contributions/authors/institutes).

Contents:

A.I. Multiplicities.

A.The bulk: A.2. A 2 in the symmetries.

- A.3. Hadronic flavor observables.
- \downarrow A.4. Correlations at low p_T.

B. Hard and B.I. High-pT observables and jets. **EM probes:** B.2. Heavy quarks and quarkonium. B.3. Leptonic probes and photons.

Only predictions for PbPb.

See also Borghini and Wiedemann, arXiv:0707.0654.

Contents:

A.I. Multiplicities.

A.2. Azimuthal asymmetries.

- A.3. Hadronic flavor observables.
- \downarrow A.4. Correlations at low pt.

B. Hard and EM probes:

A.The bulk:

B. I. High-p_T observables and jets.B.2. Heavy quarks and quarkonium.B.3. Leptonic probes and photons.

Remark: I assume that a **RHIC-** (and possibly SPS-) tested model can be reliably extrapolated to the LHC.The huge lever arm in energy will eventually falsify some of them.

Only predictions for PbPb.

See also Borghini and Wiedemann, arXiv:0707.0654.

A.I. Multiplicities (I):

Charged multiplicity for η =0 in central Pb+Pb at $\sqrt{s_{_{NN}}}$ =5.5 TeV

lst-day observable, key input in almost all other predictions.

To unify the discussion, I 'rescale' to $dN_{ch}/d\eta|_{\eta=0}$ for $N_{part}=350$ using a Monte Carlo (Amelin et al., EPJC22(2001)149):

Predictions for the LHC: an Overview: A. The bulk

%	 (fm)	<n<sub>part></n<sub>	<n<sub>coll></n<sub>	$dN_{ch}/dy _{y=0}$	$dN_{ch}/d\eta _{\eta=0}$
0-3	1.9	390	1584	3149	2633
0-5	2.4	375	1490	2956	2472
0-6	2.7	367	1447	2872	2402
0-7.5	3.0	357	1390	2759	2306
0-8.5	3. I	350	1354	2686	2245
0-9	3.2	347	1336	2649	2214
0-10	3.4	340	1303	2583	2159

3

A.I. Multiplicities (II):

A.I. Multiplicities (II):

Generic expectation: less than 2000. Most models include now a large degree of collectivity: strong gluon shadowing, strong color fields, saturation,...

A.2. Azimuthal asymmetries: v₂

p_T-integrated v₂ is expected to increase from RHIC to the LHC: origin? Hydro predictions do not coincide with naive extrapolations.

From BW.

A.2. Azimuthal asymmetries: v₂ in hydro

Drescher et al., smaller deviation from ideal hydro limit than at RHIC.

Bluhm et al., QPM EOS, results < RHIC at low pt.

Predictions for the LHC: an Overview: A. The bulk

3

A.2. Azimuthal asymmetries: v₂ in hydro

Drescher et al., smaller deviation from ideal hydro

Generic expectation: v₂ similar or slightly decreasing at low p_T.
 A strong decrease would probably signal an increase in η/s, but initial conditions have to be settled.

A.2. Azimuthal asymmetries: v₂ in others

euf Chen et al., AMPT, parton + hadron transport.

Molnar, MPC parton cascade, fixed $\eta/s=0.08$.

 $\int_{0.45}^{1} (0.4) (0.$

Capella et al., comovers.

A.2. Azimuthal asymmetries: v₂ in others

Generic expectation: v₂ increases at low p_T.
A strong increase is not expected in any hydro description.

Molnar, MPC parton cascade, fixed $\eta/s=0.08$.

Capella et al., comovers.

A.3. Hadr. flavor observ.: statistical

Andronic et al., equilibrium values for $\mu_b=0.8$ MeV,T=161 MeV.

Kraus et al., (grand-)canonical, T and R_c may be determined.

T[MeV]	140*	140*	162*
dV/dy[fm ³]	2036	4187	6200*
dS/dy	7517	15262	18021
$dh_{\rm ch}/dy$	1150*	2351	2430
$dh_{\rm ch}^{\rm vis}/dy$	1351	2797*	2797
$1000 \cdot (\lambda_{\rm q,s} - 1)$	5.6*, 2.1	5.6*, 2.1	5.6*, 2.0
$\mu_{\mathrm{B,S}}[\mathrm{MeV}]$	2.4, 0.5	2.3, 0.5	2.7, 0.6
$\gamma_{q,s}$	1.62, 2.42	1.6*, 2.6	$1^*, 1^*$
s/S	0.034*	0.037*	0.025
E/b	420*	428	408
E/TS	1.02	1.05	0.86
P/E	0.165	0.164	0.162
E/V[MeV/fm ³]	530	538	400
P[MeV]	87	88	65
P	25/45	49/95	66/104
$b-\bar{b}$	2.6	5.3	6.1
$(b+\bar{b})/h^-$	0.335	0.345	0.363
$0.1 \cdot \pi^{\pm}$	49/67	99/126	103/126
K±	94	207	175
ϕ	14	33	23
Λ	19/28	41/62	37/50
Ξ-	4	9.5	5.8
Ω^{-}	0.82	2.08	0.98

Rafelski et al., non-equilibrium scenarios; non-strange resonances reduced.

A.3. Hadr. flavor observ.: statistical

T[MeV]	140*	140*	162*
dV/dy[fm ³]	2036	4187	6200*
dS/dy	7517	15262	18021
$dh_{\rm ch}/dy$	1150*	2351	2430
$dh_{\rm ch}^{\rm vis}/dy$	1351	2797*	2797
$1000 \cdot (\lambda_{q,s} - 1)$	5.6*, 2.1	5.6*, 2.1	5.6*, 2.0

Different statistical scenarios may be distinguished.

This becomes of great importance for open charm and charmonium: different scenarios

lead to marked differences in production.

$0.1 \cdot \pi^{\pm}$	49/67	99/126	103/126
K±	94	207	175
ϕ	14	33	23
Λ	19/28	41/62	37/50
Ξ^-	4	9.5	5.8
Ω^{-}	0.82	2.08	0.98

Rafelski et al., non-equilibrium scenarios; non-strange resonances reduced.

A.3. Hadr. flavor observ.: baryons at low pt

p-pbar<4 at η=0 (BJ: Topor Pop et al., Bopp et al.; hydro: Eskola et al.; EPOS: Porteboeuf et al., RDM: Wolschin et al.).

Predictions for the LHC: an Overview: A. The bulk

A.3. Hadr. flavor observ.: baryons at low pt

p-pbar<4 at η=0 (BJ: Topor Pop et al., Bopp et al.; hydro: Eskola et al.; EPOS: Porteboeuf et al., RDM: Wolschin et al.).

Cronin effect for protons will strongly constrain models.

Ratios will further clarify the hadronization mechanism.

\Rightarrow A large b-bbar at η =0 would be a real

surprise.

Predictions for the LHC: an Overview: A. The bulk

A.4. Correlations at low pT: HBT

Predictions for the LHC: an Overview: A. The bulk

Hydro: same problems as at RHIC - R_{out} (k_T), $R_{side}(k_T)$, $R_{out} >> R_{side}$; out- \rightarrow in-plane shape.

A.4. Correlations at low pT: HBT

R's increase from RHIC to the LHC in all models.

But the predictive power is limited by the problems at RHIC.

Dissipative effects on HBT are not well

understood yet.

R _{out}	3.60/4.23	5.4/6.0-6.5
R side	3.52/4.70	4.3/5.3-6.3
Rlong	3.23/4.86	6.1/7.6-8.6

Hydro: same problems

as at RHIC - R_{out} (k_T),

 $R_{side}(k_T), R_{out} >> R_{side};$

out- \rightarrow in-plane shape.

B. Hard probes: benchmark

B. Hard probes: benchmark

To avoid this uncertainty within the LHC frame, an accurate control of the benchmark will be required (as it was at RHIC).

B.I. High-pt observ.: RAA for light flavors

B.I. High-pT observ.: RAA for light flavors

$R_{PbPb}(p_{T}=20,50 \text{ GeV},\eta=0)$ in central Pb+Pb at $\sqrt{s_{NN}}=5.5 \text{ TeV}$

B.I. High-p_T observ.: R_{AA} for light flavors

$R_{PbPb}(p_{T}=20,50 \text{ GeV},\eta=0)$ in central Pb+Pb at $\sqrt{s_{NN}}=5.5 \text{ TeV}$

Wang et al., π^0 , 5 % (\in_0 ~3.3 \in_0^{RHIC}), WW eloss+1d exp., shadowing

Pantuev, charged, N_{part} =350, τ_{QGP}^{form} =1.2 fm~0.5(τ_{QGP}^{form})^{RHIC}

Lokhtin et al., charged, 10 % (dN^{ch}/d η ~2700), rad.+coll. eloss in MC

Kopeliovich et al., π^0 , 10 %, early hadronization

Radiative energy loss favors R_{AA}~0.1-0.2 at p_T~20 GeV and increasing with increasing p_T.

B.I. High-pT observ.: hadrochemistry and FF

Modification of hadrochemistry due to elastic +conversions, rad. eloss or modified jet radiation.

Modified fragmentation functions, both for jets (elastic+radiative in PYQUEN) and for the hadron-triggered case (WW rad. model).

B.I. High-pT observ.: hadrochemistry and FF

Modification of hadrochemistry due to elastic +conversions, rad. eloss or

Chemical composition and more differential observables will be key to establish the mechanism underlying jet quenching.

fragmentation functions, both for jets (elastic+radiative in PYQUEN) and for the hadron-triggered case (WW rad. model).

B.2. HQ and quarkonium: RAA for heavy

pQCD-based models valid for hadronization outside the medium, so for high p⊤ (see also Vitev). Double ratios B/D are sensitive to mass effects until quite high p⊤ and offer possibilities to discriminate models for HQ jet quenching (Horowitz et al.).

B.2. HQ and quarkonium: RAA for heavy

 LHC will provide R_{AA} for both leptons and mesons.
 Double ratios will become available.
 This will clarify the mechanism for HQ jet quenching and hadronization.

Double ratios B/D are sensitive to mass effects until quite high p_T and offer possibilities to discriminate models for HQ jet quenching (Horowitz et al.).

B.2. HQ and quarkonium: quarkonia suppr.

Andronic et al.: dependence on charm cross section; Thews et al.: p_T-broadening to verify recombination, with uncertainties from cold matter effects (Kang et al.).

Vogt: p_Tdependent screening, no regeneration; H. Liu et al., suppression at larger p_T.

Capella et al., 0712.4331, comovers+reco.

B.2. HQ and quarkonium: quarkonia suppr.

Andronic et al.: dependence on charm cross section;Thews et al.: pT-broadening to verify

- Initial production, λ² = 10 x RHIC value
- In-medium formation, $\lambda^2 = RHIC$ value
- In-medium formation, $\lambda^2 = 10 \text{ x}$ RHIC value

Considerable uncertainties both in the production and in the suppression mechanisms limit our predictive power.

Vogt: p_Tdependent screening, no regeneration; H. Liu et al., suppression at larger p_T.

Capella et al., 0712.4331, comovers+reco.

B.3. Leptonic probes and photons: photons

High pT: quenching in fragmentation (also Arleo). Low pT: new effects e.g. conversions, thermal,... expected (also Rezaeian et al.).

Predictions for the LHC: an Overview: B. Hard and EM probes

At the LHC, all the regions up to very high p_T can be studied.

Control of the benchmark, from pp to PbPb, key to disentangle thermal production.

B.3. Leptonic probes and photons: dileptons

Ratio γ/γ^* shows a plateau at large p_T of thermal origin, independently of details of expansion, EOS,...

Dremin: Cherenkov radiation as the origin of the 'broadening' of the ρ .

B.3. Leptonic probes and photons: dileptons

Ratio γ/γ^* shows a plateau at large p_T of thermal origin, independently of details of expansion, EOS,...

Both low and high M and p_T required to disentangle different mechanisms. But the huge HQ contribution looks really challenging.

RHIC-tested models face the LHC era

Observable at RHIC	Standard interpretation	Prediction for the LHC
Low multiplicity	Strong coherence in particle production	dN _{ch} /dη _{η=0} <2000 for central collisions
v2 in agreement with ideal hydro	Almost ideal fluid	Similar or smaller $v_2(p_T)$
Strong jet quenching	Opaque medium	R _{AA} (20 GeV)~0.1-0.2 for π ⁰

* This picture has motivated new theoretical developments: application of AdS/CFT, early thermalization, viscous hydro, CGC,...

* Major deviations from expectations will enlarge our understanding of Ultra-Relativistic Heavy-Ion Collisions: naive extrapolations tend to disagree with those from successful models at RHIC.

* New experimental observables at LHC: higher p_T, jets, higher quarkonium states,... demand new theoretical tools. Predictions for the LHC: an Overview

To conclude: a little bit of history

To conclude: a little bit of history

To conclude: a little bit of history

Thanks to J.Albacete, F. Bopp, W. Busza, L. Cunqueiro, A. Dainese, A. El, K. Eskola, U. Heinz, C.-M. Ko, I. Lokhtin, G. Milhano, C. Pajares, V. Pantuev, T. Renk, V. Topor Pop, R. Venugopalan, I. Vitev, X. N. Wang, K. Werner and G. Wolschin for feedback on their predictions, and to J. Albacete, J. Casalderrey-Solana, K. Eskola, E. Ferreiro, U. Heinz, P. Jacobs, C. Salgado, X. N. Wang and U. Wiedemann for discussions on the talk.

Backup I: pA

Forward $R_{pA}(p_T)$ as a probe of high density dynamics: saturation for light (Armesto et al., Boer et al.) and heavy (Fujii et al., Tuchin), or absence of saturation (Arsene et al.); Λ polarization (Boer et al.).

A.4. Correlations at low pt (II):

$$\langle n_B \rangle_F = a + bn_F, \quad b \equiv D_{FB}^2 / D_{FF}^2, \qquad b = \frac{\langle n_B \rangle / \langle n_F \rangle}{1 + K / \langle n_F \rangle}$$

$$I/K \equiv D^2_{FP} / \langle n_F \rangle \langle n_F \rangle$$

Dias de Deus et al.: FB correlations may help to establish the dynamics of particle production.

Predictions for the LHC: an Overview: A. The bulk

Bauchle et al., Mach cones in hydro, peak displaced from naive expectation; Betz et al., gradual energy deposition required. Other mechanism possible: Cherenkov (Dremin), and instabilities (Mannarelli et al.) - unstable modes for jets with speed larger than cs, which peak at larger angles for larger speed.

Backup II: fluctuations

$$\begin{split} \Psi_{N_{1}/N_{2}}^{N_{1}} &= \frac{dN_{1}}{dy} v_{N_{1}/N_{2}}^{dyn} \\ v_{N_{1}/N_{2}}^{dyn} &= (\sigma_{N_{1}/N_{2}}^{dyn})^{2} = \sigma_{N_{1}/N_{2}}^{2} - (\sigma_{N_{1}/N_{2}}^{Poisson})^{2} = \\ &= \frac{\langle N_{1}(N_{1}-1)\rangle}{\langle N_{1}\rangle^{2}} + \frac{\langle N_{2}(N_{2}-1)\rangle}{\langle N_{2}\rangle^{2}} - 2\frac{\langle N_{1}N_{2}\rangle}{\langle N_{1}\rangle\langle N_{2}\rangle} \end{split}$$

Torrieri: fluctuations in particle ratios as a tool to verify the statistical model and decide which ensemble or non-eq. situation holds.

Cunqueiro et al.: multiplicity fluctuations determined by the number of coherent particle sources, possibility to verify phase transition scenarios.

B.I. High-pT observ.: theory

First-principle calculations of **qhat** in the vaccum correlator model (Antonov et al.), in N=4 SYM (H. Liu et al.) and in ThFT with coherence effects (Casalderrey et al.).

Inclusion of elastic eloss in DGLAP-like evolution (Pirner et al.) and consideration of a dynamical medium in GLV eloss (Djordjevic et al.).

B.2. HQ and quarkonium: reference

B.2. HQ and quarkonium: reference

B.2. HQ and quarkonium: ratios

D^-/D^+	$ar{D_0}/D_0$	D^{*-}/D^{*+}	D_s^-/D_s^+	$\bar{\Lambda_c}/\Lambda_c$	D^+/D_0	D^{*+}/D_0
1.00(0)	1.01(0)	1.01(0)	1.00(1)	1.00(1)	0.425(18)	0.387(15)
D_{s}^{+}/D_{0}	Λ_c/D_0	ψ'/ψ	η_c/ψ	χ_{c1}/ψ	χ_{c2}/ψ	
0.349(14)	0.163(16)	0.031(3)	0.617(14)	0.086(5)	0.110(8)	

Andronic et al.: ratios at equilibrium in the statistical model.

Kuznetsova et al.: strangeness oversaturation may lead to modifications in the ratios and to a suppression in the production of ccbar states.

B.2. HQ and quarkonium: ratios

D^-/D^+	$ar{D_0}/D_0$	D^{*-}/D^{*+}	D_s^-/D_s^+	$\bar{\Lambda_c}/\Lambda_c$	D^+/D_0	D^{*+}/D_0
1.00(0)	1.01(0)	1.01(0)	1.00(1)	1.00(1)	0.425(18)	0.387(15)
D_{s}^{+}/D_{0}	Λ_c/D_0	ψ'/ψ	η_c/ψ	χ_{c1}/ψ	χ_{c2}/ψ	
0.349(14)	0.163(16)	0.031(3)	0.617(14)	0.086(5)	0.110(8)	

Andronic et al.: ratios at equilibrium in the statistical model.

Chemical composition studies will have implications on recombination models for

Guarkonium. Strangeness oversaturation may lead to modifications in the ratios and to a suppression in the production of ccbar states.

B.2. HQ and quarkonium: others

Mocsy et al., dissociation T in potential models.

$$L_s(v,T) \simeq L_s(0,T)/\sqrt{\gamma} \longrightarrow T_{\rm diss}(v) \simeq T_{\rm diss}(0)/\sqrt{\gamma}$$

H. Liu et al., screening lengths through the medium, new suppression at larger p_T if produced inside the medium

Zhang et al., thermal charm at NLO.

Gonçalves et al., charm in UPC, test of production and npdf's.

Backup III: others

Becattini et al.: in peripheral collisions, a highly spinning QGP may be formed \rightarrow decreasing mu_b, larger v₂, polarization.

Stocker et al.: creation of black holes in HIC due to low-scale extra dimensions: suppression of dijets, remmants.

Lee et al.: coalescence formation of charmed exotic, multiquark hadrons, test of particle production mechanism.

Lokhtin et al.: exotic phenomena in HE CR, like alignment of tracks, may become visible at the LHC.