Theoretical Review of Dileptons from Heavy Ion Collisions

Hendrik van Hees

Texas A&M University

February 8, 2008
1. QCD, Chiral Symmetry, and Dileptons
2. Hadronic Models in Medium
3. Models vs. Experiments
4. Sensitivities to QCD Matter
5. Conclusions
Dileptons and in-medium em. current correlation function

\[\ell^- \ell^- q \bar{q} \rho / \omega \pi, \ldots, M, q_t \gtrless 1.5 \text{ GeV} \]

\[\ell^+ \ell^- M, q_t \lesssim 1.5 \text{ GeV} \]

- **Dilepton emission rate** [McLerran, Toimela 85]

\[
\frac{dN_{e^+e^-}}{d^4x d^4q} = -g^{\mu\nu} \frac{\alpha_{\text{em}}^2}{3q^2 \pi^3} \text{Im} \left. \Pi^{(\text{em})}_{\mu\nu}(q) \right|_{q^2 = M_{e^+e^-}^2} f_B(q_0)
\]

\[
\Pi^{(\text{em})}_{\mu\nu}(q) = \int d^4x \exp(iq \cdot x) \Theta(x_0) \left\langle \left[j^{(\text{em})}_\mu(x), j^{(\text{em})}_\nu(0) \right] \right\rangle_T
\]

- **\(\ell^+ \ell^- \) spectra \(\iff \) in-medium em. current-current correlator
- **Vector dominance \(\Rightarrow \) in-medium modifications of vector mesons!**
Chiral Symmetry Restoration

- light-quark sector of QCD: chiral symmetry
 - spontaneously broken in vacuum ($\langle \bar{q}q \rangle \neq 0$)
 - high temperature/density: restoration of chiral symmetry
- Lattice QCD: $T^\chi_c \approx T^\text{deconf}_c$

Mechanism of chiral restoration?
- “dropping masses”: $m_{\text{had}} \propto \langle \bar{\psi}\psi \rangle$
- “melting resonances”: broadening of spectra through medium effects

Diagram:
- Graph showing the spectral function with contributions from V and A transitions.
- Comparison of predicted and observed spectral functions.

Legend:
- $V[\tau \rightarrow 2n\pi \nu_\tau]$
- $A[\tau \rightarrow (2n+1)\pi \nu_\tau]$
- $\rho(770) + \text{cont.}$
- $a_1(1260) + \text{cont.}$

Questions:
- Dropping Masses?
- Melting Resonances?
Weinberg sum rules

\[M_n = -\int_0^\infty \frac{ds}{\pi} s^n [\text{Im} \Pi_V(s) - \text{Im} \Pi_A(s)] \]

\[M_{-2} = \frac{1}{3} f_\pi^2 \langle r_\pi^2 \rangle - F_A, \quad M_{-1} = f_\pi^2 \]

\[M_0 = 0, \quad M_1 = c\alpha_s \langle (\bar{q}q)^2 \rangle \]

- theory connection of \textit{chiral symm. restoration} with dileptons in HICs
 - \(\Pi_V, \Pi_A \) from \textit{chiral hadronic model} at finite \(T, \mu_B \)
 - compare \(M_n(T, \mu_B) \) to \textit{IQCD} chiral order parameters at finite \(T \)
 - compare \(\Pi_V \) from \textit{hadronic model} to dileptons from HICs

- also QCD sum rules
 - relate \textit{current correlators} to \textit{condensates}
 - \textit{VMD} \(\leftrightarrow \) \textit{vector-meson spectral functions}

\[\rho_N = \rho_0, \quad \kappa = 236 \]

\(\text{S. Leupold, W. Peters, U. Mosel} \)

\(\text{Nucl. Phys. A 628, 311 (1998)} \)
Hadronic many-body theory

- **pion-cloud modifications and baryonic/mesonic excitations**

[Chanfray et al, Herrmann et al, Ko et al, Rapp et al, Klingl et al, Post et al, Friman et al, ...]

- substantial broadening of vector mesons with little mass shift!
 - baryon effects prevalent ($\rho_B + \rho_B$, not $\rho_B - \rho_B$, relevant!)
 - different approaches consistent if constrained by data
 ($\gamma N, \gamma A, \pi N \rightarrow \rho N$)
Hadronic models vs. lattice QCD

Dilepton Excitation Function in Central Au-Au ($N_{\text{part}}=330$)

Isovector Susceptibility

\[\chi_q,I = \frac{\partial p}{\partial\mu_{q,I}}, \quad \mu_q = \mu_u + \mu_d, \quad \mu_I = \mu_u - \mu_d \]

- excitation function from top SPS to top RHIC energies:
 - little change in hadronic contribution [Rapp 02]
- IQCD: Smooth behavior of susceptibilities in $I = 1$ channel [Allton et al 04]
 - consistent with no mass shift in $I = 1$ channel
 - NB: $\chi_q (I = 0)$ shows peak at $T \rightarrow T_c$: signature of phase transition!
ρ meson in hot hadronic matter

- **EBEK:** [Eletsky, Belkacem, Ellis, Kapusta 01]
 - empirical $\rho + B/M$ scattering amplitudes
 - + Pomeron/Regge background
 - $T\rho$ approximation for finite-T effects
- **RW:** Hadronic many-body theory [Rapp, Wambach 99]
- **Somewhat different results**
 - more broadening and level repulsion:
 - in-med modifications of pion-cloud + ρBN interactions
Chiral approaches

- **Chiral reduction formalism** [Steele et al 96]
 - leading order in π and N density + chiral reduction formulas
 \[\Rightarrow \text{in-medium current correlators in terms of vacuum correlators} \]
 - no Dyson resummation!

- **Hidden local symmetry** [Bando et al 85; Harada, Yamawaki 01,...]
 - Vector manifestation of chiral symmetry: ρ_{long} chiral partner of π
 \[\Rightarrow \text{dropping ρ mass + violation of vector dominance ($T > T_{\text{flash}} = 0.7T_c$)} \]

- dilepton rates similar to more simple dropping mass models
Elementary reactions ($\gamma + A, \ p + A$)

- **Left:** JLaB $\gamma + A \rightarrow e^+ + e^-$ [CLAS Collab. 07]
 - Theory: Boltzmann Uehling Uhlenbeck (BUU) transport [Effenberger et al 00]
 - Good agreement: no mass shift, broadening of the ρ: $\Gamma_\rho \sim 220$ MeV
- **Right:** KEK $p + A \rightarrow e^+ + e^-$ [E325 Collaboration 07]
 - Fit to dropping-mass ansatz: $m^*/m = (1 - C \varrho/\varrho_0)$
 - $C = 0.092 \pm 0.002$, no broadening
 - Contradiction with JLab
 - ρ/ω ratio small; yield for $M > 0.85$ GeV?
HADES confirms DLS

Theory: transport model (HSD); coll. broadening + dropping mass
[Bratkovskaya, Cassing 07]

- moderate sensitivity to vector-meson medium effects!
- solution of DLS puzzle
 - improved e^+e^- Bremsstrahlung [de Jong, Mosel 97; Kaptari, Kämpfer 06]
 - updated η- and Δ-Dalitz contributions
CERES vs. Hadronic many-body theory

- Dilepton emission from thermal source
- thermal fireball evolution (isentropic QGP/MIX + hadron gas)

\[
\frac{dN_{\text{therm}}^{\ell\ell}}{dM} \propto - \int_{\text{FB}} d^4x \int \frac{d^3q}{Mq_0} \text{Im} \Pi^{(\text{em})}(q_0, \vec{q}) f_B(q_0) \text{Acc}
\]

- baryon effects essential!
 - many-body effects ⇔ very low-mass excess

[HvH, R. Rapp 07]
NA60 vs. Hadronic many-body theory + HR fireball

- ρ, ω, ϕ multi-π, QGP, freeze-out + primordial ρ, Drell-Yan

M spectra
- Consistent with predicted broadening of ρ meson
- $M < 1$ GeV: thermal ρ; $M > 1$ GeV: thermal multi-pion processes

m_t spectra
- $q_t < 1$ GeV: thermal radiation
- $q_t > 1$ GeV: freeze-out + hard primordial ρ, Drell-Yan

[HvH, Rapp 07]
NA 60 vs. Chiral reduction formalism + hydrodynamics

- low-mass + IMR spectrum described
- ρ: lack of broadening (due to low-density approximation)
- q_T spectra: only thermal + freezeout, no primordial ρ

[Dusling, Teaney, Zahed 07]
NA60 vs. empirical spectral functions + RR fireball

- only thermal + freeze-out
- large QGP contribution
- sensitivity of spectral functions to data?!

[Ruppert et al 07]
HR fireball [HvH, Rapp 06, 07]

- thermal dileptons: agrees with hydro
- pions: need “primordial” hard comp.
 - low p_T: resonance decays
 - consistent with measured $R_A^{(\pi)}$

RR fireball [Ruppert, Renk 07]

- dileptons: harder than hydro
- pions: thermal only
Sensitivity II: Intermed. mass region – QGP vs. hadron gas

- **EoS-B**: $T_c = T_{chem} = 160$ MeV (large QGP part)
- **EoS-C**: $T_c = 190$ MeV, $T_{chem} = 160$ MeV (small QGP part)
- volume $\leftrightarrow T$: emission dominated by temperatures around T_c
 - (QGP vs. high-density hadronic phase)
- description of spectra comparable for different EoS

[HvH, Rapp 07]
Sensitivity III: Critical temperature and freeze-out

- **EoS-A**: $T_c = T_{\text{chem}} = 175$ MeV; **EoS-B**: $T_c = T_{\text{chem}} = 160$ MeV
- **EoS-C**: $T_c = 190$ MeV, $T_{\text{chem}} = 160$ MeV
 - norm depends on t_{fireball} (kept fixed here)!
 - description of spectra comparable
 - reason for insensitivity to EoS and hadro-chemistry [HvH, Rapp 07]:
 - hadronic and partonic radiation "dual" for $T \sim T_c$
 - (pQCD: $\Pi_V \equiv \Pi_A \Rightarrow$ compatible with chiral symmetry restoration!)
PHENIX $e^+ e^-$-mass spectrum

min. bias 200A GeV Au+Au

Minimum Bias Au-Au Cocktail + Yield Data

hadronic many-body theory

[chiral reduction formalism

[central scaled by N_{part}]

LMR enhancement cannot be described!
Predictions: $e^+e^−-q_T$ spectra at RHIC

- theory: thermal [Rapp 08 (unpublished)]; hard contributions [Turbide et al 06]
- hard contributions (jet-thermal) take over for $q_T \gtrsim 3$ GeV
Conclusions and Outlook

- Models for vector (ρ) mesons in medium
 - hadronic many-body theory
 - broadening, small mass shifts of spectra (baryon effects prevalent)
 - hadron-parton duality of dilepton rates (QGP portion depends on T_c)
 - chiral reduction formalism
 - low-density approximation, no broadening

- HLS+Vector Manifestation
 - dropping mass, no vector dominance near T_c

- Theory vs. Experiment
 - Elementary reactions
 - JLAB: BUU transport with broadening (with no mass shift)
 - KEK: Dropping-mass ansatz
 - Heavy-ion collisions
 - HADES (DLS): HSD transport; improved Bremsstrahlung and Δ Dalitz
 - CERES, NA60: Hadronic many-body theory robust due to duality involved mix of contributions at high q_T
 - PHENIX: Low-mass enhancement can not be described!
Conclusions and Outlook

- **Not covered in this talk: Thermal Photons**
 - Same em. correlator as for dileptons!
 - Hadronic many body theory: improvement in description of WA98 data
 - [Liu, Rapp 06]
 - Possibility to measure T_{initial}:
 \[
 \frac{dN_{\ell\ell}/dq_T}{dN_\gamma/dq_T}
 \]
 - [Alam et al 07]

- **Connection between chiral symmetry restoration and dilepton data**
 - hadronic chiral model at finite $T \Rightarrow \Pi_V$ and Π_A
 - confront Π_V with dilepton data
 - check moments of $\Pi_V - \Pi_A$ with lQCD via Weinberg sum rules