Search for a Ridge structure origin with shower broadening and jet quenching

R. Mizukawa, T. Hiranoa, M. Isseb, Y. Narac and A. Ohnishi
Hokkaido Univ., aUniv. of Tokyo, bKobe City College of Tech., cAkita Int. Univ.
Contents

• What is Ridge? What makes Ridge?
• Model: Momentum Broadening and JFS/SFS
 • Jet-Fluid String (JFS) results
 • Jet and Shower Broadening in Glasma
• Results
 • $\Delta \phi$ correlation
 • $\Delta \eta - \Delta \phi$ correlations
• Summary
What is Ridge?

- Ridge structure: base-like structure in the $\Delta \eta$ direction
- Standard picture
 - No Ridge due to hadrons from jet parton
 - Indicating the correlation between jet and other

What makes RIDGE?

- Glasma
- Candidate of Fast thermalization
- Generated by color field instability
- Momentum broadening

Mainly in η direction
\rightarrow Large $\Delta \eta$ width

Does this effect make ridge?
Model
Jet-Fluid String model

Jet production (PYTHIA) + E-loss (3D Hydro + GLV) + String Form. with Fluid + String Frag.

Explains high p_T signals!

How about RIDGE in JFS?

- Conjecture: Rapidity gap of endpoints makes ridge
- Answer = NO
 - Fluid p_T is too small
 - Thermal Rapidity gap is not large
Momentum Broadening in glasma

Jet-Fluid String model
+ Momentum broadening
Broadening in Glasma

- **Characteristic Features**
 - $Q_{jet} \gg Q_s$ → Random but common field for one jet
 - Color force → Opposite direction for q and qbar
 - Anisotropic: $E_z > E_T$ → Large η gap between jet and shower

- **Our implementation**
 - Random Gaussian
 - $\Delta p_z > \Delta p_T$
 - Opposite force for end points

T. Lappi, L. McLerran hep-ph/0602189
Results
$\Delta \phi$ correlation with Broadening

- Parameters:
 $$(\Delta p_z, \Delta p_T) = (10 \text{GeV/c, } 2.5 \text{GeV/c})$$
- No backward peak
- Nearside peak
 larger width, larger yield
\(\Delta \eta - \Delta \phi \) correlation with Broadening

- Long \(\Delta \eta \) correlation
- Small \(\Delta \phi \) width
- Peak / Base ratio: too much
Parameter dependence

- Large Δp_z is necessary
- Moderate Δp_T for shower hadronization
Summary

- Ridge doesn’t appear in Jet-Fluid String model.
- We implement momentum broadening in the pre-equilibrium stage in the JFS model.
- If we have enough anisotropic momentum broadening, strings from jet and shower partons can make ridge structure.

→ **Momentum broadening in glasma is a possible mechanism to create ridge structure.**

- Future work: More quantitative analysis is needed, because peak height is too large.