

February 8, 2008 @QM2008, Jaipur, India

Chiho NONAKA

3D Hydro+UrQMD with QCP

Initial Conditions

- Energy density $\varepsilon(x,y,\eta) = \varepsilon_{\max} W(x,y;b)H(\eta)$
- Baryon number density $n_B(x,y,\eta) = n_{Bmax}W(x,y;b)H(\eta)$
- Parameters $\begin{cases} \tau_0 = 0.6 \text{ fm/c} \\ \eta_0 = 0.5 \sigma_\eta = 1.5 \end{cases}$
- Flow
 - $v_{\rm L}$ = η (Bjorken's solution); $v_{\rm T}$ =0
- EOS: QCP, Bag Model

 T_{SW} =150 [MeV]

Switching temperature

Californetia

QCP: $T_E = 143.7 \text{ MeV}, \ \mu_E = 652.0 \text{ MeV}$

•longitudinal direction: $H(\eta)$

Chiho NONAKA

Chiho NONAKA

Summary

3D Hydro + UrQMD Model with the QCD critical point

- Isentropic trajectories
- $P_{\rm T}$ spectra, hadron ratio
- The QCD critical point search
 - Energy scan

parameter sets of ε and $n_{\rm B}$ in initial conditions

- Switching temperature dependence
- Location of QCD critical point
- Physical observables
 - Fluctuations
 - Balance function

BACKUP

Chiho NONAKA

Chiho NONAKA

Non-Singular Part

Hadron Phase

• Excluded volume model $P(T,\mu_B) = \sum_{i} P_i^{\text{ideal}}(T,\mu_{Bi} - V_0 P(T,\mu_{Bi}))$ $= \sum_{i} P_i^{\text{ideal}}(T,\tilde{\mu}_{Bi})$

QGP Phase

$$P(T,\mu_B) = \frac{(32+21N_f)\pi^2}{180}T^4 + \frac{N_f}{2}\left(\frac{\mu_B}{3}\right)^2 T^2 + \frac{N_f}{4\pi^2}\left(\frac{\mu_B}{3}\right)^4 - B$$

N_f=2 B:Bag constant (220 MeV)⁴

 $\mathsf{P}_{\mathsf{QGP}}$

 T_{c}

 P_{H}

P ↑ ^µB=0

В

Chiho NONAKA

econfinement

neutron stars

1.2

Singular Part + Non-singular Part

Entropy Density

$$S_{\text{real}}(T,\mu_B) = \frac{1}{2} \left\{ 1 - \tanh[S_c(T,\mu_B)] \right\} S_H(T,\mu_B) + \frac{1}{2} \left\{ 1 + \tanh[S_c(T,\mu_B)] \right\} S_Q(T,\mu_B)$$

- $S_H(T,\mu_B)$ Hadron Phase (excluded volume model) $S_Q(T,\mu_B)$ QGP phase
- Dimensionless parameter: S_c $S_c(T, \mu_B) = s_c \sqrt{(\Delta T_{crit})^2 + (\Delta \mu_{crit})^2} \times D$ Critical domain
- Choice of parameters: $\Delta T_{crit}, \Delta \mu_{crit}, D$

Thermodynamical inequalities

$$\left. \left(\frac{\partial S}{\partial T} \right) \right|_{V,N} \geq 0, \quad \left(\frac{\partial P}{\partial V} \right) \right|_{T,N} \geq 0, \quad \left(\frac{\partial \mu}{\partial N} \right) \right|_{T,V} \geq 0$$

Chiho NONAKA

Sound Velocity in EoS with CEP

Correlation Length in Equilibrium

Evolution of Correlation Length

Chiho NONAKA

Fluctuations (I) CERES:Nucl.Phys.A727(2003)97 μ_{B} (MeV) **Fluctuations** 100 200 400 300 (%) CERES RES, present data STAR RQMD 40,80,158 AGeV Pb+Au UrQMD collisions Mean PT Fluctuation 0.5 $\sigma_{PT,dyb}^{2} \equiv \left\langle \Delta M_{PT}^{2} \right\rangle - \frac{\Delta P_{T}^{2}}{\langle N \rangle}$ $\langle M_x^2 \rangle = \frac{\sum_{j=1}^n N_j (M_x^j - \langle M_x \rangle)^2}{\langle M_x^2 \rangle}$ -0.5 10 $\Sigma_{\mathsf{PT}} = \operatorname{sgn}(\sigma_{PT,dyn}^2)$ ∖s_{nn} (GeV) 0.05 No unusually large fluctuation or 200non-monotonic behavior ∑ 160 120 120 **CEP:** attractor of isentropic trajectories Similar correlation length and fluctuation is 80 observed near CEP. 500 100 300 700 μ [MeV]

Chiho NONAKA

10

25

Calger Ingla

Carlos India