Dissipative effects from transport and viscous hydrodynamics

Pasi Huovinen

Purdue University

Denes Molnar RIKEN/BNL Research Center & Purdue University

Quark Matter 2008

February 8, 2008, Jaipur, India

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias Au+Au at RHIC

 \Rightarrow the idea of plasma as "perfect fluid"

• but how perfect? - what if $\eta/s > 0$, e.g., the conjectured $\eta/s \ge 1/(4\pi)$

Two options to study dissipative effects at RHIC

- causal viscous hydrodynamics

Israel, Stewart; ... Muronga, Rischke; Teaney; Romatschke et al; Heinz et al...

- covariant transport

Israel, de Groot,... Zhang, Gyulassy, DM, Pratt, Xu, Greiner...

Viscous hydrodynamics

relativistic Navier-Stokes hydro: small corrections linear in gradients

$$T_{NS}^{\mu\nu} = T_{ideal}^{\mu\nu} + \eta (\nabla^{\mu}u^{\nu} + \nabla^{\nu}u^{\mu} - \frac{2}{3}\Delta^{\mu\nu}\partial^{\alpha}u_{\alpha}) + \zeta \Delta^{\mu\nu}\partial^{\alpha}u_{\alpha}$$
$$N_{NS}^{\mu} = N_{ideal}^{\mu} - \frac{n}{e+p}\kappa \nabla^{\mu}T$$

where $\Delta^{\mu
u}\equiv u^{\mu}u^{
u}-g^{\mu
u}$, $abla^{\mu}=\Delta^{\mu
u}\partial_{
u}$

 η,ζ shear and bulk viscosities, κ heat conductivity

two problems:

parabolic equations \rightarrow **acausal** Müller ('76), Israel & Stewart ('79) ...

instabilities Hiscock & Lindblom, PRD31, 725 (1985) ...

Causal viscous hydro

Müller, Israel & Stewart...

$$\Delta T^{\mu
u}\equiv\pi^{\mu
u}+\Pi\Delta^{\mu
u}$$
 , $\Delta N^{\mu}=-rac{n}{e+p}q^{\mu}$

bulk pressure Π , shear stress $\pi^{\mu\nu}$ heat flow q^{μ} treated as independent dynamical quantities that relax toward their Navier-Stokes value on time scales $\tau_{\Pi}(e, n)$, $\tau_{\pi}(e, n)$, $\tau_{q}(e, n)$ - corresponds to keeping not only first but (certain) second derivatives

schematically

$$\dot{X} = -\frac{X - X_{NS}}{\tau_X}$$

restores causality (for not too small τ_X) telegraph eqn

In the literature

Romatschke & Romatschke, arXiv:0706.1522:

- Au+Au, minimum bias
- initial density different for ideal and dissipative evolution
- EoS with phase transition
- $T_{\rm fo} = 150 \,\, {\rm MeV}$

Song & Heinz, arXiv:0709.0742 and 0712:3715:

- Cu+Cu, b = 7 fm
- ideal gas EoS or EoS with phase transition
- $T_{\rm fo} = 130 \,\,{\rm MeV}$

Dusling & Teaney, arxiv:0710.5932:

- equations by Öttinger and Grmela
- Au+Au, b = 6.5 fm
- ideal gas EoS
- Freeze-out at $au_R \sim \partial_\mu u^\mu$

Chaudhuri, arXiv:0704.0134 and 0801.3180:

- Au+Au, various centralities
- initial shear from Navier-Stokes
- ideal EoS or EoS with phase transition

$\eta/s = 1/(4\pi)$ corrections from IS hydro

Song & Heinz, arXiv:0712:3715

Dusling & Teaney, arxiv:0710.5932

corrections to flow or only to distributions?

Potential caveat

Whereas Navier-Stokes is an expansion in λ/R (keeps only first derivatives), Israel-Stewart hydro is NOT a controlled approximation (retains certain second derivatives). For example in kinetic theory, it corresponds to Grad's 14-moment approximation

 $f(x,p) \approx [1 + C_{\alpha\beta} p^{\alpha} p^{\beta}] e^{(\mu - p^{\mu} u_{\mu})/T}$

while NS comes from the Chapman-Enskog expansion in small gradients

$$E\partial tf + \epsilon \cdot \vec{p}\,\vec{\nabla}f = C[f]$$
 , $f = f_0 + \epsilon f_1 + \epsilon^2 f_2 + ...$

If relaxation effects important, NS and IS are different

⇒ control against a nonequilibrium theory is crucial

Covariant transport

Boltzmann ..., Israel, Stewart, de Groot, ... Pang, Zhang, Gyulassy, DM, Vance, Csizmadia, Pratt, Cheng, Xu, Greiner ...

Covariant, causal, nonequil. approach - formulated in terms of local rates.

$$e.g., \ \Gamma_{2\to 2}(x) \equiv \frac{dN_{scattering}}{d^4x} = \sigma v_{rel} \frac{n^2(x)}{2}$$

This theory has a hydrodynamic limit (i.e., it equilibrates) Boltzmann

Parameter σ controls transport coefficients and relaxation:

$$\eta \approx 0.8 \frac{T}{\sigma_{tr}} \qquad \qquad \tau_{\pi} = 1.2 \lambda_{tr}$$

solvable numerically: HERE, utilize MPC algorithm DM & Gyulassy, NPA 697 ('02)

In transport
$$\eta/s \sim \lambda_{tr}T \sim 1/(\sigma T^2)$$

e.g., for $\sigma \approx 50$ mb ($\sigma_{tr} \approx 14$ mb)

 $\Rightarrow \eta/s = const$ needs growing $\sigma(\tau) \propto 1/T^2 \propto \tau^{2/3}$

already encoded in perturbative QCD: $\sigma_{tr} \sim \frac{\alpha_s^2}{s} ln \frac{s}{\mu_D^2} \sim \frac{g^4}{T^2} ln \frac{1}{g^2}$

Ideal hydro vs transport

15-30% reduction of v_2 from transport due to dissipation

Viscous hydro vs transport

We solve the full Israel-Stewart equations, including vorticity terms from kinetic theory, in a 2+1D boost-invariant scenario. Shear stress only.

Mimic a known reliable transport model:

- massless Boltzmann particles $\Rightarrow \epsilon = 3P$
- only $2 \leftrightarrow 2$ processes, i.e. conserved particle number
- $\eta = 4T/(5\sigma_{\rm tr})$
- either $\sigma = \text{const.} = 47 \text{ mb } (\sigma_{tr} = 14 \text{ mb}) \leftarrow \text{the simplest in transport}$ or $\sigma \propto \tau^{2/3} \Rightarrow \eta/s \approx 1/(4\pi)$

"RHIC-like" initialization:

- $\tau_0 = 0.6 \text{ fm/}c$
- b = 8 fm
- $T_0 = 385$ MeV and $dN/d\eta|_{b=0} = 1000$
- freeze-out at constant $n = 0.365 \text{ fm}^{-3}$

Pressure evolution in the core

 T^{xx} and T^{zz} averaged over the core of the system, $r_{\perp} < 1$ fm:

remarkable similarity!

Viscous hydro elliptic flow

TWO effects: - dissipative corrections to hydro fields u^{μ}, T, n

- dissipative corrections to thermal distributions $f
ightarrow f_0 + \delta f$

 $\eta/s \approx 1/(4\pi)$ $(\sigma \propto \tau^{2/3})$

$$\delta f = f_0 \left[1 + \frac{p^\mu p^\nu \pi_{\mu\nu}}{8nT^6} \right]$$

calculation for $\sigma_{\rm tr} = const \sim 15 mb$ shows similar behavior

Viscous hydro vs transport v_2

- excellent agreement when $\sigma = \mathrm{const} \sim 47 mb$
- good agreement for $\eta/s \approx 1/(4\pi)$, i.e., $\sigma \propto \tau^{2/3}$
- BUT results sensitive to freeze-out criterion, especially at high pT

Conclusions

Prospects for applicability of Israel-Stewart causal hydrodynamics at RHIC look promising, based on comparisons with covariant $2 \rightarrow 2$ transport in 2+1D Bjorken scenario.

Dissipative effects change both flow and distributions.

Dissipation reduces $v_2(p_T)$ by 20-30%, for $\eta/s=1/(4\pi)$ and conditions expected at RHIC

NOTE: hydrodynamical results are sensitive to the freeze-out procedure \rightarrow being investigated

This is just the beginning, stay tuned.

- detailed cross-checks of other calculations, exploration of parameter space, etc, etc