Theoretical Review of Dileptons from Heavy Ion Collisions

Hendrik van Hees

Texas A&M University

February 8, 2008

1 QCD, Chiral Symmetry, and Dileptons

- 2 Hadronic Models in Medium
- 3 Models vs. Experiments
- 4 Sensitivities to QCD Matter

Dileptons and in-medium em. current correlation function

• Dilepton emission rate [McLerran, Toimela 85]

$$\frac{\mathrm{d}N_{e^+e^-}}{\mathrm{d}^4x\mathrm{d}^4q} = -g^{\mu\nu}\frac{\alpha_{\mathrm{em}}^2}{3q^2\pi^3} \operatorname{Im}\Pi^{(\mathrm{em})}_{\mu\nu}(q)\Big|_{q^2=M^2_{e^+e^-}} f_B(q_0)$$
$$\Pi^{(\mathrm{em})}_{\mu\nu}(q) = \int \mathrm{d}^4x \exp(\mathrm{i}q \cdot x)\Theta(x_0) \left\langle \left[j^{(\mathrm{em})}_{\mu}(x), j^{(\mathrm{em})}_{\nu}(0)\right] \right\rangle_T$$

- $\ell^+\ell^-$ spectra \Leftrightarrow in-medium em. current-current correlator
- Vector dominance ⇒ in-medium modifications of vector mesons!

Chiral Symmetry Restoration

- light-quark sector of QCD: chiral symmetry
 - spontaneously broken in vacuum ($\langle \bar{q}q \rangle \neq 0)$
 - high temperature/density: restoration of chiral symmetry
 - Lattice QCD: $T_c^{\chi} \simeq T_c^{\text{deconf}}$

- Mechanism of chiral restoration?
 - "dropping masses": $m_{
 m had} \propto \left< ar{\psi} \psi \right>$
 - "melting resonances": broadening of spectra through medium effects

Weinberg sum rules

$$M_n = -\int_0^\infty \frac{\mathrm{d}s}{\pi} s^n [\operatorname{Im} \Pi_V(s) - \operatorname{Im} \Pi_A(s)]$$
$$M_{-2} = \frac{1}{3} f_\pi^2 \left\langle r_\pi^2 \right\rangle - F_A, \quad M_{-1} = f_\pi^2$$
$$M_0 = 0, \quad M_1 = c\alpha_s \left\langle (\bar{q}q)^2 \right\rangle$$

[Weinberg 67; Das et al 67; Kapusta, Shuryak 93]

- theory connection of chiral symm. restoration with dileptons in HICs
 - Π_V , Π_A from chiral hadronic model at finite T, μ_B
 - compare $M_n(T, \mu_B)$ to IQCD chiral order parameters at finite T
 - compare Π_V from hadronic model to dileptons from HICs

also QCD sum rules

- relate current correlators to condensates
- VMD ⇔ vector-meson spectral functions

Hadronic many-body theory

pion-cloud modifications and baryonic/mesonic excitations

[Chanfray et al, Herrmann et al, Ko et al, Rapp et al, Klingl et al, Post et al, Friman et al, ...]

• substantial broadening of vector mesons with little mass shift!

- baryon effects prevalent $(\rho_B + \rho_{\bar{B}}, \text{ not } \rho_B \rho_{\bar{B}}, \text{ relevant!})$
- different approaches consistent if constrained by data $(\gamma N, \gamma A, \pi N \rightarrow \rho N)$

Hendrik van Hees (Texas A&M University)

Hadronic models vs. lattice QCD

• excitation function from top SPS to top RHIC energies: little change in hadronic contribution [Rapp 02]

- IQCD: Smooth behavior of susceptibilities in I = 1 channel [Allton et al 04]
 - consistent with no mass shift in I = 1 channel
 - NB: χ_q (I = 0) shows peak at $T \rightarrow T_c$: signature of phase transition!

ρ meson in hot hadronic matter

• EBEK: [Eletsky, Belkacem, Ellis, Kapusta 01]

- empirical $\rho+B/M$ scattering amplitudes
 - + Pomeron/Regge background
- $T\rho$ approximation for finite-T effects
- RW: Hadronic many-body theory [Rapp, Wambach 99]
- Somewhat different results
 - more broadening and level repulsion: in-med modifications of pion-cloud + ρBN interactions

Chiral approaches

- Chiral reduction formalism [Steele et al 96]
 - leading order in π and N density + chiral reduction formulas
 - ⇒ in-medium current correlators in terms of vacuum correlators
 - no Dyson resummation!
- Hidden local symmetry [Bando et al 85; Harada, Yamawaki 01,...]
 - Vector manifestation of chiral symmetry: ρ_{long} chiral partner of π
 - \Rightarrow dropping ρ mass + violation of vector dominance $(T > T_{\text{flash}} = 0.7T_c)$

[Harada, Sasaki 07]

• dilepton rates similar to more simple dropping mass models

Elementary reactions ($\gamma + A$, p + A)

- left: JLaB $\gamma + A \rightarrow e^+ + e^-$ [CLAS Collab. 07]
 - Theory: Boltzmann Uehling Uhlenbeck (BUU) transport [Effenberger et al 00]
 - good agreement: no mass shift, broadening of the ρ : $\Gamma_{\rho} \sim 220 \text{ MeV}$
- right: KEK $p+A \rightarrow e^+ + e^-$ [E325 Collaboration 07]
 - fit to dropping-mass ansatz: $m^*/m = (1 C\varrho/\varrho_0)$
 - $C = 0.092 \pm 0.002$, no broadening
 - Contradiction with JLab
 - ρ/ω ratio small; yield for M > 0.85 GeV?

1-2 AGeV A-A: HADES and DLS

- HADES confirms DLS
- Theory: transport model (HSD); coll. broadening + dropping mass [Bratkovskaya, Cassing 07]
 - moderate sensitivity to vector-meson medium effects!
 - solution of DLS puzzle
 - improved e^+e^- Bremsstrahlung [de Jong, Mosel 97; Kaptari, Kämpfer 06]
 - updated $\eta\text{-}$ and $\Delta\text{-}\mathsf{Dalitz}$ contributions

CERES vs. Hadronic many-body theory

- Dilepton emission from thermal source
- thermal fireball evolution (isentropic QGP/MIX + hadron gas)

$$\frac{\mathrm{d}N_{\ell\ell}^{\text{therm}}}{\mathrm{d}M} \propto -\int_{\mathsf{FB}} \mathrm{d}^4x \int \frac{\mathrm{d}^3q}{Mq_0} \operatorname{Im} \Pi^{(\mathsf{em})}(q_0, \vec{q}) f_B(q_0) \mathsf{Acc}$$

- baryon effects essential!
 - many-body effects \Leftrightarrow very low-mass excess

[[]HvH, R. Rapp 07]

NA60 vs. Hadronic many-body theory + HR fireball

• ρ , ω , ϕ multi- π , QGP, freeze-out+primordial ρ , Drell-Yan

 \bullet M spectra

[HvH, Rapp 07]

- \bullet consistent with predicted broadening of ρ meson
- M < 1GeV: thermal ρ ; M > 1 GeV: thermal multi-pion processes
- *m_t* spectra
 - $q_t < 1$ GeV: thermal radiation
 - $q_t > 1$ GeV: freeze-out + hard primordial ρ , Drell-Yan

Hendrik van Hees (Texas A&M University)

Theoretical Dilepton Review

NA 60 vs. Chiral reduction formalism + hydrodynamics

- low-mass + IMR spectrum described
- ρ : lack of broadening (due to low-density approximation)
- q_T spectra: only thermal + freezeout, no primordial ho

NA60 vs. empirical spectral functions + RR fireball

[Ruppert et al 07]

- only thermal + freeze-out
- large QGP contribution
- sensitivity of spectral functions to data?!

Sensitivity I: Fireball models vs. hydrodynamics

- HR fireball [HvH, Rapp 06, 07]
 - thermal dileptons: agrees with hydro
 - pions: need "primordial" hard comp. low p_T: resonance decays consistent with measured R^(π)_{AA}
- RR fireball [Ruppert, Renk 07]
 - dileptons: harder than hydro
 - pions: thermal only

Sensitivity II: Intermed. mass region - QGP vs. hadron gas

[[]HvH, Rapp 07]

- EoS-B: $T_c = T_{chem} = 160 \text{ MeV}$ (large QGP part) EoS-C: $T_c = 190 \text{ MeV}$, $T_{chem} = 160 \text{ MeV}$ (small QGP part)
- volume $\leftrightarrow T$: emission dominated by temperatures around T_c (QGP vs. high-density hadronic phase)
- description of spectra comparable for different EoS

Sensitivity III: Critical temperature and freeze-out

- EoS-A: $T_c = T_{chem} = 175 \text{ MeV}$; EoS-B: $T_c = T_{chem} = 160 \text{ MeV}$ EoS-C: $T_c = 190 \text{ MeV}$, $T_{chem} = 160 \text{ MeV}$
 - norm depends on t_{fireball} (kept fixed here)!
 - description of spectra comparable
 - \bullet reason for insensitivity to EoS and hadro-chemistry $_{[H\nu H,\ Rapp\ 07]}$:
 - hadronic and partonic radiation "dual" for $T \sim T_c$ (pQCD: $\Pi_V \equiv \Pi_A \Rightarrow$ compatible with chiral symmetry restoration!)

PHENIX e^+e^- -mass spectrum

min. bias 200AGeV Au+Au minimum bias Au+Au @ vs = 200 GeV

[Rapp 01, 02]

(for $N_{\text{part}} = 125$)

Cocktail Minimum Bias Au-Au 10⁻¹ + Yield Data QN/dM [GeV⁻¹] 10⁻³ 10-4 10⁻⁵ 0.2 0.4 0.6 0.8 1.2 1.4 1 M [GeV] chiral reduction formalism [Dusling, Zahed 07]

(central scaled by N_{part})

• LMR enhancement cannot be described!

Predictions: e^+e^- - q_T spectra at RHIC

• theory: thermal [Rapp 08 (unpublished)]; hard contributions [Turbide et al 06]

• hard contributions (jet-thermal) take over for $q_T\gtrsim 3~{
m GeV}$

Conclusions and Outlook

- Models for vector (ρ) mesons in medium
 - hadronic many-body theory
 - broadening, small mass shifts of spectra (baryon effects prevalent)
 - hadron-parton duality of dilepton rates (QGP portion depends on T_c)
 - chiral reduction formalism
 - low-density approximation, no broadening
 - HLS+Vector Manifestation
 - dropping mass, no vector dominance near T_c
- Theory vs. Experiment
 - Elementary reactions
 - JLAB: BUU transport with broadening (with no mass shift)
 - KEK: Dropping-mass ansatz
 - Heavy-ion collisions
 - HADES (DLS): HSD transport; improved Bremsstrahlung and Δ Dalitz
 - CERES, NA60: Hadronic many-body theory robust due to duality involved mix of contributions at high q_T
 - PHENIX: Low-mass enhancement can not be described!

Conclusions and Outlook

• Not covered in this talk: Thermal Photons

- Same em. correlator as for dileptons!
- Hadronic many body theory: improvement in description of WA98 data [Liu, Rapp 06]
- Possibility to measure T_{initial} :

$$\frac{\mathrm{d}N_{\ell\ell}/\mathrm{d}q_T}{\mathrm{d}N_{\gamma}/\mathrm{d}q_T}$$

[Alam et al 07]

• Connection between chiral symmetry restoration and dilepton data

- hadronic chiral model at finite $T \Rightarrow \Pi_V$ and Π_A
- confront Π_V with dilepton data
- check moments of $\Pi_V \Pi_A$ with IQCD via Weinberg sum rules