Chiral Symmetry and Heavy-Ion Collisions

Kenji Fukushima Yukawa Institute for Theoretical Physics (YITP)

Agenda

Page allage alla allage allage allage

QCD phase diagram is really established ?

- □ What is robust and what is not ?
- □ How to draw the phase diagram ?

Lattice does not work at finite µ . . .

- □ What is to be described by the model ?
- QCD critical point

History of the Phase Diagram

Bielefeld Proceedings in 1982

AND AL AND AL AND AL AND AL AND AL AND AND AND AL AND

Lattice QCD

ALAR ALARA ALARA

Taken from Kogut, Stone, Wyld, Gibbs, Shigemitsu, Shenker, Sinclair (1983)

$\langle \overline{\psi} \psi \rangle$ Chiral Condensate $W \sim \exp\left[-f_q/T\right]$ Polyakov Loop

Chiral Restoration occurs simultaneously with Deconfinement !

Long Range Plan in 1983

ANDAR ANDAR ANDAR ANDAR AND AR AND AND AND AR AN

PHASE DIAGRAM OF NUCLEAR MATTER

Why not?

How can we exclude a possibility like...

A State of States States

Low-Energy Chiral Model

alle a alle a alle a alle a alle a alle a alle alle a alle e

Taken from Hatsuda-Kunihiro (1985)

Critical End-Point (QCD Critical Point)

ĦĨŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿĸĹĿŢŔĬŢĿ

Taken from Asakawa-Yazaki (1986)

Theory tells us...

MARANA MARANA

- Much about Chiral Phase Transition Phase Diagram
 - □ Effective models based on chiral symmetry
 - □ Well-defined order parameter in $m \rightarrow 0$ limit

The phase structure can be clarified without confinement or deconfinement unless two transitions are distinct.

Little about Deconfinement Transition

- □ Effective models based on center symmetry
- □ Well-defined order parameter in $1/m \rightarrow 0$ limit

Lattice QCD simulations cannot draw the phase diagram yet...

→ Talks at Session XI Posters

Confirmed

only at µ=0

Entanglement of Two Dynamics

HER ALL HER ALL HER ALL HER ALL HER ALL HER HER HER ALL HER ALL HER ALL HER ALL HER ALL HER ALL HER A

Pisarski (1982) Shuryak (1981) Digal-Satz (2001) Mocsy-Sunnino-Tuominen (2003) Hatta-Fukushima (2003)

QCD

Ideas

Gocksch-Ogilvie (1985) Fukushima (2002) Strong coupling expansion

Model

Fukushima (2003) NJL model with the Polyakov loop (Partial) confinement below T_c Simultaneous transitions

Consistency with Lattice

 \rightarrow Posters on PNJL

by Hansen-Alberico-Costa, Ghosh-Mukhejee-Mustafa-Ray

Ratti-Thaler-Weise (2004) Named PNJL model

Idea

Only $L \cdot L^+$ and $L \cdot L \cdot L$ nonvanishing meson-like baryon-like

Chiral Condensate

Chiral Condensate

Chiral Susceptibility

From a different view point

ANDAR, ANDAR

No critical point ?

Is it possible for the chiral model studies to

lead to **NO** critical point ?

ನಿ, ಬೆಟ್ಟೆಯನ್, ಬೆಟ್ಟೆಯನ್, ಬೆಟ್ಟೆಯಬೇಕಿಯನ್, ಬೆಟ್ಟೆಯನ್, 1

Yes... but the reason is rather technical...

$U_{A}(1) \text{ breaking term } \rightarrow \text{ Flavor Mixing} \\ \rightarrow \text{ First-order Transition}$

could be reduced at high density

't Hooft interaction dependence

ĦŊŗŴĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢŧĔĊĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢĸĊĸĔŔŢ

35% reduction of the six-point flavor mixing interaction leads to NO critical point on the QCD phase diagram.

Remarks

Deconfinement

- □ Thermodynamics (Equation of State)
 - (QCD critical point is an exception.) Talk by Nonaka

Chiral Restoration

- □ Reduction of decay constants ~30% reduction of f_{π} in nuclei
- □ Collective excitations (indirect)
 - Mass shift and/or width broadening of mesons
 - Quark spectral functions

 \Box Fluctuation (only near T_c)

 ρ meson from dilepton

Not work for the critical point Poster by Fujii-Tanji

Summary

ಕೆಂದ್ರ ಮತ್ತಿಂದು ಮತ್ತು ಮತ್ತುವು ಮತ್ತುವು ಮತ್ತುವು ಬ

We should keep in mind that deconfinement and chiral restoration are different phenomena.

It could be still possible to have modification on the (nearly established) QCD phase diagram.

The critical-point search is a big challenge for theory and experiment.